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ABSTRACT Recurrent neural networks (RNN) based on a long short-term memory (LSTM) are used
for predicting the future out of a given set of time series data. Usually, only one future time step is
predicted. In this article, the capability of LSTM networks for a wide look into the future is explored.
The time series data are taken from the evolution of share prices from stock trading. As expected, the
longer the view into the future the stronger the deviations between prediction and reality. However, strange
memory effects are observed. They range from periodic predictions (with time periods of the order of one
month) to predictions that are an exact copy of a long-term sequence from far previous data. The trigger
mechanisms for recalling memory in LSTM networks seem to be rather independent of the behaviour
of the time-series data within the last “sliding window" or “batch". Similar periodic predictions are also
observed for GRU networks and if the trainable parameters are reduced drastically. A better understanding
of the influence of regularisations details of RNNs may be helpful for improving their predictive power.

KEYWORDS Time series; Recurrent Neural Network (RNN); Long Short-Term Memory (LSTM); Gated
Recurrent Unit (GRU); long–term forecasting; autoregressive model; stock market;

I. INTRODUCTION
In a Recurrent Neural Network (RNN), the output of a
neural network is fed back into the input layer where,
at each time step, it is combined with time series data.
Theoretically, the weights of the neural network should be
trainable in such a way that a historical evolution can be
stored. However, this construction has to cope the vanishing
or exploding gradients when the weights are trained using
the Back-Propagation Through Time (BPTT) technique, e.g.
[1], which makes it practically impossible to apply RNNs
for longer time intervals.

Long Short-Term Memory (LSTM) networks are an ex-
tension of RNNs [2] and are able to store historic informa-
tion over quite long time intervals [3].

Mathematically, the gradient problem of RNNs when
using BPTT are due to Jacobian matrices that are multiplied
at least as many times as the number of relevant time steps.1

1If the eigenvalues of a matrix are smaller/larger than one, products
of this matrix with itself vanish/increase quite rapidly (0.9100 ≈ 2.7 ·
10−5, 1.1100 ≈ 1.4 · 104).

By replacing "simple neurons" with so-called "memory
cells" with sufficiently complex substructures, long product
sequences are avoided and effectively replaced by sums.
In other words, memory cells can be considered as a
regularisation method in order to avoid singularities.

In physics, regularisation is a common method when an
observable quantity turns out to be singular: it is then modi-
fied by introducing additional parameters, which, however,
must not have any influence on the measurable values of
the observable (but on values which, e.g., are beyond the
measurement range or below the measurement accuracy).
Applied to RNNs, this means that a solution to the gradient
problems should be such that, on the one hand, the essential
properties of a time series can be stored and, on the other
hand, reliable temporal predictions are possible.

There is considerable freedom in defining the substructure
of a memory cell and, accordingly, there are several variants
of LSTM networks [4]. GRU networks, for example, have
a comparatively simple memory cell structure [5].

Despite their success, LSTM networks have faced funda-
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mental difficulties. The memory cells strongly increase the
number of weights that need to be trained. Consequently, it
is hard to extract causal reasonings why specific predictions
are made. Furthermore, the stability of predictions against
small changes of the input values of time series data is
unclear.

In Ref. [6], LSTM networks are applied to weather time
series data of 14 physical parameters (e.g. temperature and
atmospheric pressure) collected in periods of 1 hour. It turns
out that a single time–step forecast of the temperature is
pretty good. However, multiple time–step forecasts (of all
parameters in parallel via autoregressive feedback loops)
turn out to be considerably less successful and, from this
behaviour, it is concluded that LSTM networks are not the
means of choice for long–term forecasts of weather data.

The motivation for this work resulted from the question,
whether a time horizon can be specified up to where
forecasts of an LSTM network are reliable. According to
the "weak efficient market hypothesis", the current value of
a stock price depends on its history but there is no effective
method for predicting its future development [7]. In view of
this hypothesis, the period of a reliable stock market forecast
should effectively be zero time steps. However, as it will
turn out, some previously unobserved properties of LSTM
networks are now emerging quite clearly.

Related Work. Using LSTM networks to predict finan-
cial values is quite popular. The intention, in general, is to
develop methods that allow the evaluation or improvement
of the quality of forecasts. The following works reflect this
approach.

Zanc et al. [8] try to predict intraday prices of the digital
currency bitcoin. They trained an LSTM network with 100
epochs and a window with a length of 22 time steps. At first
glance, the predicted price for one time step into the future
(10 sec.) looks quite accurate. However, the prediction turns
out to be nothing but a shifted version of the actual data by
one time step.

To find optimal values for the hyper–parameters of LSTM
networks, Chung et al. [9] use a genetic algorithm. They
explore the influence of the length of the window and the
number of LSTM units on predicting one day of the Korea
Stock Price Index. Their hybrid model of an LSTM network
and a genetic algorithm performs better than a simple model
that predicts no day–to–day change.

II. MODEL DESIGN
In this section, the preparation of the data is is described
and the details of LSTM networks are specified.

A. DATA PROCESSING
The time series data in this work are taken from “adjusted
closing prices“2 of a stock [10]. The raw data need to be

2The closing raw price of a day is modified by taking relevant actions
into account that influenced its value after the close of the stock market,
e.g. dividend payments or stock splits

preprocessed to use them in LSTM networks.
Firstly, the data are scaled to the range 0 to 1 (min-

max normalisation), i.e. the price pt of the day t obeys
0 ≤ pt ≤ 1. Secondly, the data set is split into a “training
set" (for adjusting the weights of the LSTM network) and a
“validation set" (for checking the forecast capabilities of the
network). In a further step, “sequences" of Nw consecutive
prices are generated from the training data (Nw is the length
of a "sliding window"). From the sequences, two arrays
are constructed: a 2–dimensional array x of input values
and a 1–dimensional array y of output values [11]. The
underlying idea is to consider the historical evolution in the
sense that a price pt at time t is influenced by the prices pτ
at the Nw previous times τ ∈ {t − 1, t − 2, . . . , t − Nw}.
For example, for a training sample of NT = 8 prices
[p1, p2, . . . , p8] and for a window of size Nw = 5, the input
array consists of NT −Nw = 3 sequences

x = [[p1, p2, p3, p4, p5], [p2, p3, p4, p5, p6], [p3, p4, p5, p6, p7]]

that are obtained by “sliding" a window over the training
data, and the output array

y = [p6, p7, p8].

is given by the last 3 prices.
During the training phase, the array x is forwarded

through an LSTM network, whose weights are adjusted such
that the outcome p̂i of the i–th window of the array x
becomes a good approximation of the i–th element of the
array y, specifically the Mean Squared Error (MSE)

MSE =
1

NT −Nw

NT∑
t=Nw+1

(pt − p̂t−Nw)
2.

is minimised. The weights are determined using the back-
propagation method. A common procedure for approximat-
ing the MSE is based on so–called (mini–)batches: the set
of sequences is evenly divided into Nb disjoint subsets,
where each subset consists of consecutive elements of the
arrays x and y. The number Nb is called “batch size". The
gradients of the backpropagation method are updated after
the sequences of a batch have passed through the LSTM
network.

An “epoch" characterises an iteration over the whole
training set. Considering only one epoch is usually not
sufficient as, for example, the “causal connections" during
the transitions between the batch samples may not well be
represented. To optimise an LSTM network, iterations are
performed over Ne epochs, where Ne is large enough to
make the MSE sufficiently small. Here, the weights at the
end of one epoch are used as the initial weights of the next
epoch. For more details see e.g. [12].

B. AUTOREGRESSIVE MODEL
Autoregressive models can be used for n–step–ahead fore-
casting. For a given window, a price for the next time step
is predicted. The prediction is used to create a new window
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by “sliding" the given window by one time step towards the
future, where the predicted price becomes the most recent
price and the oldest price of the given window is removed.
The new window is put again into the model to generate
a prediction for the day after next. This process can be
repeated until the desired number of days is generated.

C. ARCHITECTURE OF LSTM NETWORKS
An LSTM network consists of a set of parameters. In Table
1, the values are specified that are used in this article for
predicting the evolution of stock prices.

Hyper-parameter Value
No. of hidden LSTM layers 1, 4, 6
No. of LSTM units per layer 3, 64, 128
Batch size Nb 256
Window size Nw 20, 30
No. of epochs Ne 4000, 8000, 64000

Table 1. Parameters of the LSTM networks used in this
article.

After each LSTM layer there is one dropout layer, whose
rate is set to 0.2, i.e. 20 % of the output of the previous
layer is randomly set to zero. This acts as a regularisation
mechanism for reducing overfitting effects. The training is
done with the ADAM optimiser [13] with a learning rate of
0.001 and the MSE as a loss function.

The batch size has the fixed value Nb = 256. The initial
value for the number of epochs is 4000 and increased to
8000 if the training data are not reproduced sufficiently well
(see Fig. 3). Similarly, an architecture that consists of too
few stacked

LSTM layers and too few units per layer may not be
sufficiently complex. For example, for a network with only
two layers and 64 units per layer “strongly damped" autore-
gressive predictions were observed that converge rapidly to
a horizontal line. To get a handle on this effect, the numbers
of epochs, or layers, or units per layer have been increased.
The LSTM networks are trained with a window length of
20, or 30 days.

The LSTM networks are built using TensorFlow version
2.4 [14]. The framework provides built–in APIs for training,
and prediction (such as Model.fit(), and Model.predict(),
see [15]). The function predict() is applied to the training
data and, for each window, a price is provided for the next
time step (the orange curves in the next section represent
the outcome of this forecast procedure). A multiple–day
forecast is constructed using the autoregressive model, see
Section 2.2 (the black curves in the next section represent
the outcome of a 200–day forecast of the training data).

To speed up the training, CuDNNLSTM [16] is used.
These cells were developed by Nvidia to run efficient on
Nvidia GPUs. In all tests the Nvidia T4 GPU [17] is utilised.

III. RESULTS
The blue dots in the following figures show the evolution
of the stocks selected for this article. The range of the gray

curves correspond to the time period from which the training
data are taken3. The orange curves represent the outcome
if a fully trained LSTM network is used to make day–by–
day predictions. The fact that the orange curves are nearly
identical to the dotted gray curves indicates a success of the
training.
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Figure 1. Evolution of the FTSE All World Index: training
phase Apr. 2008 – Dec. 2019 (2971 days of training data, for
reasons of clarity, only the last period of the training phase
is shown, this applies also to the other figures), prediction
period 200 days. Hyper–parameters: 6 LSTM layers with
64 units per layer, windows length 20 days, 4000 epochs.

Fig. 1 shows the outcome when an LSTM network is
trained on the data of the FTSE All World Index [18],
The black line shows the prediction of 200 days based
on the autoregressive model: while the first two months
after the training phase (at the end of December 2020) are
quite well predicted, the collapse of the share due to the
Corona pandemic is not reflected. Surprisingly, the black
curve shows a repetition behaviour with a period of nearly
one month. This strange property is not observed in the
training data and must, nevertheless, be encoded in the
LSTM network.

Fig. 2 shows the evolution of the stock price of Nvidia.
Over almost the whole period (2007–2008), the price de-
velopment shows almost linear growth (until Oct. 2008)
and is therefore similar to the growth behaviour of the
All World Index in 2019 (see Fig. 1). This observation
suggests that it is worth considering whether the LSTM
network of one share can be used to predict the performance
of another share. The 1–day prediction during the training
phase (orange curve) is determined by applying the LSTM
network that was trained with the All-World Index: the
agreement is surprisingly good in the first half of the training
period and deviates only by a few percent in the second
half. The 200 days forecast (black curve) also shows a
periodic behaviour, however the amplitude is decreasing
(like a damped oscillator).

3The default version of the API predict(), which is used in the analyses
of this article, does not provide values for the first Nw time steps of the
training data.
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Figure 2. Stock price of Nvida: training data taken from the
FTSE All-World Index (see Fig. 1), prediction period 200
days. Hyper–parameters: 6 LSTM layers with 64 units per
layer, windows length 20 days, 4000 epochs.
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Figure 3. Stock price of SAP SE: training phase mid 2010
– mid 2015 (1238 days of training data), prediction period
200 days. Hyper–parameters: 4 LSTM layers with 64 units
per layer, windows length 20 days, 8000 epochs.

A curious memory effect can be seen in Fig. 3. Within
the forecast period after the training phase (black curve)
a pattern is repeated after a certain time (highlighted by
the gray curves in between the black). The shape of this
repetition does not occur in the training period (mid 2010 -
mid 2015). It should be noted that the period duration of the
pattern is about a quarter of a year, which is considerably
longer than the window size Nw = 20 days. The LSTM
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Figure 4. Stock price of Nvidia: training phase 1999 – 2019
(5237 days of training data), prediction period 200 days.
Hyper–parameters: 6 LSTM layers with 128 units per layer,
windows length 30 days, 4000 epochs.

network has in total 107,057 trainable parameters4 and is
seemingly able to remember predictions already made. At
first glance, it is not apparent whether there is a triggering
impulse for this flashback effect.

A further strange memory effect is shown in Fig. 4. The
pattern of the forecast after the training phase is an (almost)
exact copy of the stock price evolution a rather long time
ago: see the highlighted black curve within the period July
2018 - March 2019. Apparently, the memory of an LSTM
network seems to be active over long periods of time and
can be triggered by a currently unknown mechanism.

When the training is limited to time series with short
periods, the number of LSTM memory cells can be reduced
strongly. Fig. 5 shows that only 76 trainable parameters
are sufficient to train the performance of the SAP share
(see Fig. 3) over a period of half a year, however, it
should be noted that the number of epochs is significantly
larger (64,000 instead of 8,000). Nevertheless, even for this
rather small LSTM network, the prediction shows periodic
behavior. This periodic property can even be observed, if the
LSTM network is replaced by a GRU network with only 33
trainable parameters, see Fig. 6.

4The number is provided by the TensorFlow API summary(). Its high
value indicates the complexity of the apparently simple LSTM network
and is composed as follows. The dominant contribution is due the recurrent
weight matrices R associated to the hidden state of each of the LSTM units:
R increases quadratically with the number of LSTM units (the output of the
hidden state of each LSTM unit is reconnected – in the next time step – to
every LSTM unit within the layer). In addition, there are the input weights
W , and the input bias parameters bi of the time series data, and (for
CuDNNLSTM units) the bias parameters br of the recurrent weights R.
For the analysis shown in Figure 3, W , bi, and br have 64 parameters
each, whereas R has 64 × 64 parameters, i.e. in total there are (64 +
64+ 64 · 64 + 64) · 4 = 17,152 parameters, where the factor 4 takes into
account that each LSTM unit consists of 4 sub–units (input gate, forget
gate, cell state, output gate). Each of the second to fourth hidden LSTM
layers contributes additional 64 ·63 ·4 = 16,128 parameters, because each
of the LSTM units of a hidden layer is “fully connected" to the every other
LSTM output of the previous layer. The remaining 64+1 parameters belong
to the final "dense layer".
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Figure 5. Stock price of SAP: training phase February
2015 – July 2015 (84 days of training data), prediction
period 200 days. Hyper–parameters: 1 LSTM layer with 3
units, windows length 20 days, 64000 epochs, a total of 76
trainable parameters.
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Figure 6. Stock price of SAP: training phase February
2015 – July 2015 (84 days of training data), prediction
period 200 days. Hyper–parameters: 1 GRU layer with 2
units, windows length 20 days, 64000 epochs, a total of 33
trainable parameters.

IV. SUMMARY
LSTM networks are used to predict the evolution of stock
prices over a rather long period of time. Given the highly
dynamic development of stock prices, it is hardly surprising
that the forecasts are not good. It is, however, remarkable
that periodic patterns can be observed in the forecasts and
that these patterns seem to be either unrelated to the training
data or, on the contrary, are exact copies of rather long sub–
periods of the training data. Whether there are relationships
between the two effects or, more fundamentally, whether
a common cause can be identified, is not known. In this
context, it is worth mentioning that an increase of the
number of LSTM units per layer seems to increase the
probability for long–term predictions to show a periodic
behaviour. Moreover, the observed “limit cycles" seem to
be related to commonalities in the regularisation strategy of
LSTM and GRU networks. Can LSTM and GRU networks

even be associated with specific classes of feedback circuits?
In this context, efforts to connect recurrent neural networks
with neural ordinary differential equations are interesting,
e.g. [19]. More detailed analyses are necessary for assured
conclusions.
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