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 ABSTRACT The space expansion-contraction operator was originally developed to solve mathematical 

programming problems. However, it can be successfully applied to solve the problem of ellipsoidal 

approximation of the information set in the state space analytically specified. In this case, a main property of the 

operator - space compression is used to minimize the approximating ellipsoid by a multidimensional volume. 

The paper shows the use of the specified expansion-contraction operator to approximate a set of attainability of 

the linear control system as an example. The main goal of the paper is to give analytical and geometric 

representations of the specified operator in order to show its action in the approximation problem. For this 

purpose, the paper shows an analytical derivation of the operator and a geometric illustration of each parameter 

of the operator. The results of minimum approximation modeling by this operator compared with other known 

solutions have been also presented. The simulation results are given both numerically and graphically. Based on 

the results of comparison, conclusions are made and recommendations are given in the use of ellipsoidal 

approximation of information sets according to different criteria for minimizing the approximating ellipsoid. 

Typical examples of ellipsoidal approximation, which show when it is expedient to use the proposed of 

expansion-contraction operator, have been given. 

 

 KEYWORDS stretch-contract operator; state space; attainability set; ellipsoidal approximation; linear control 

system; multidimensional volume of an ellipsoid; sum of positive degrees of ellipsoid semiaxes; criterion for 

minimizing an ellipsoid. 

 

I. INTRODUCTION 

HE problem of state estimation of the linear controlled 

system is considered. An object moving in space or 

some process can be considered as a linear controlled 

system. For example, a position of the object in space or 

values of process parameters often called phase coordinates 

in the state space are considered as a state for the examples 

selected. Mathematically, such an object or a process is 

described by linear differential or difference equations. 

Phase coordinates in the course of the process or 

functioning of the object change in the desired value under 

the influence of control and deviate from the desired value 

within known limits under the impact of uncontrollable 

factors. It is assumed that the statistical characteristics of 

these factors are unknown. This is often the case, and in 

addition, it is required to guarantee existence of state 

variables in the limited set [1]. 

A set of possible states of the system can be limited by 

hyperplanes passing through the previously calculated 

extreme points − vectors of phase coordinates, the distance 

between which, taken in pairs, is the biggest. Over time, 

due to multiple intersections of a set of attainability [1] and 

a set of measurements, the number of extreme points will 

become excessive and further processing of measurement 

information for assessing a state of the system will become 

impossible. It is possible to build a set of canonical shapes: 

a hyperparallelepiped, a ball, an ellipsoid. In the first case, 

we will face an increase in uncertainty of multiple estimate 

T 
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that is a price to pay for simple calculation of parameters of 

a hyperparallelepiped, approximating states of the system 

observed. In the second case, calculations of parameters are 

the simplest, but the estimate can be either better or worse 

than in the first case. A reasonable compromise is the third 

case, ellipsoidal approximation. An understanding of this 

problem is provided by works [1, 2]. 

An ellipsoid approximating a set of possible states of 

the observed system can be constructed by different 

methods, for example, by methods of computational 

geometry [3] or by analytical methods [4]. For ellipsoidal 

approximation of convex sets, the apparatus of support 

functions or of polynomial sublevel sets is often used [5, 6]. 

The analytical method is considered here. Its advantage 

is constancy of the algorithm for calculating parameters of 

an ellipsoid approximating set of possible states of the 

system. The methods for construction of an ellipsoid by a 

chosen analytical method may differ in a criterion of 

minimization. Having chosen a multidimensional volume as 

such, we obtain a convenient mathematical property for an 

ellipsoid – invariance of the obtained ellipsoid relative to 

linear transformations of the operation of set-theoretic 

summation and intersection of ellipsoids. Methods for 

obtaining an ellipsoid of minimum volume can be different, 

but we will show the use of a space stretch-contract 

operator to obtain a required ellipsoid [7]. Since one of the 

goals of this paper is to show the use of an stretch-contract 

operator for visual analysis of the impact of uncontrolled 

factors on parameters of the approximating ellipsoid, let us 

consider a one-dimensional case – when only one 

uncontrollable factor affects the system in a known 

direction or by a known phase coordinate [8]. The full-

dimensional case of a stretch-contract operator is described 

in [9]. 

Based on the above material – visual analysis of the 

impact of an uncontrolled factor on a state of the system – 

the differences in approximating ellipsoids minimized by 

different criteria will be shown on the examples. 

II. FORMULATION OF THE PROBLEM 

Let us follow the work [8]. A linear controlled system for 

various purposes with the input control action [10-15] and 

an inexactly known initial state is considered. Let us 

represent a differential equation describing a motion of the 

object in the form of a difference equation in the state 

space. The equation of the system in the phase space of 

state variables is represented as follows 

 

1j j j jx Ax Bu w+ = + + ,   (1) 

T 1

0 .,0 0 0 0 .,0 0 0{ : ( ) ( ) 1}st stx E x x x H x x− = − −  , (2) 

 

where: 
n

jx X  − a system state vector in n -dimensional 

Euclidean space; A  and B  − constants n n - and 1n -

matrix; 
1

ju   – control; j j jw f=   − disturbance 

action; 
n

jf X  − a unit vector in n -dimensional 

Euclidean space, the direction of which is taken as constant; 
1,j j d     − scalar perturbation limited by given 

constant 0d ; ( , )A B  and ( , )jA f  pairs are controlled 

[7]; 0j T , where  0 | 0,1,..., , ( )j k kT =    − 

discrete time; .,0

n

stE X  − an ellipsoidal set of possible 

values of the initial state contained in n -dimensional 

Euclidean space; 0x  and 
T

.,0 .,0 0st stH H=   given n -

dimensional vector and n n -matrix respectively. Here st. 

− shortened from state. 

ju  controls are given in the T0  whole interval of 

control forming a program 

 
1

0{ , }ju j T  .  (3) 

 

For a set of realizations of perturbation action it is 

possible to write: 

 

TT T{ : , }n

j j j j j jf f d f f l l Xl l     .  (4) 

 

The problem is that by known expressions (1)-(3) to 

build a set of attainability of this system and approximate it 

by a minimum ellipsoid under the taken criterion. At this 

the initial (a priori) estimate .,0stE  is known. 

Such systems describe the movement of [10-15], for 

example, an aircraft as a reaction to a change in the position 

of the steering gear. For example, when turning a rudder in 

the aircraft, the angular position of the aircraft changes not 

only in the angle of yaw, but also in the angles of roll and 

pitch. The dynamics of changes of the phase variables 

(deviation angles in each of the stated control channels) 

when changing a position of the rudder in the aircraft of 

standard composition at the initial position “level flight” 

will be the most intensive in the course channel, in the roll 

channel the dynamics will be weaker, and the least 

intensive reaction will be observed in the pitch channel. 

The object moving under water behaves in exactly the same 

way – rudder deflection leads not only to a change in 

course, but also in roll and pitch with the same dynamics 

ratio as described above. The dynamic response of the 

object to control via corresponding channel and connection 

of the channels is reflected in the matrix A , which 

describes the dynamics of the system. 

When a ship or a car moves on the surface, one of this 

channel will be away − the pitch will disappear. 

We consider, for example, the movement of a car on a 

highway with curves. The input action is considered to be 

the turn of the steering wheels. As a result of turning of the 

steering wheels, the car changes its direction. Depending on 
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the speed of the car, its mass, characteristics of traction of 

the spots of tire/pavement contact with the road surface, 

skidding will take place. Skidding is considered as an 

uncontrolled rotation of the car around a vertical axis 

passing through a certain point in the car, and a 

displacement of the car (center of mass) in the lateral 

direction from the desired trajectory. In this case, the 

dynamics matrix A  reflects characteristics of the 

movement − the speed and quality of driving tire traction at 

the assumed mass. 

The error in setting of the control action or the 

uncertainty of any dynamic characteristic reflected in the 

dynamics matrix A  can be considered as the uncertainty of 

the disturbing action (4). 

Thus, the fact that the control action is carried out in one 

specific channel (in one phase variable of the system) is 

reflected in the control matrix B  − a row corresponding to 

the desired control channel has nonzero elements, and all 

other rows are zeros. In the case under consideration (3), 

the matrix is a column vector, therefore, in this case, it is a 

matter of only its elements. 

III. PROBLEM SOLVING 

A set of attainability can be represented in the form of a 

sum by Minkovsky [16-18] of two sets – ellipsoidal 

estimate .,st jE  of possible initial state of the system (2) and 

a set of disturbances (4), which is represented a .,dst jE  

segment in our case, where .dst  − shortened from 

disturbance. 

Their sum will not be an ellipsoid, therefore for further 

estimation it is necessary to approximate it by ellipsoid 

., 1st jE + . The required explanations are given in Fig. 1. 

 

Figure 1. Minkowski summa of a circle .,st jE  and a line 

segment .,dst jE  and its ellipsoidal approximation. 

Let us perform this approximation with the help of 

stretch-contract operator, for which we first write down the 

geometric sum j  of two sets .,st jE  and .,dst jw  with the 

help of the apparatus of reference functions: 

 

1 1 1 1

T T

1 1

{ :

, }

j j j j

T T n

j j jj j

E x x

l l H l l f f l d l X



+ + + +

+ +

=  = −

  +  
,(8) 

 

where 
T

.,1 st jj j
H AH A

+
= . 

Then let us write [9]: 

 
2 T

., 1 1, 2,1

1 1

1, 2, 1, 2,

,

1, 0, 0,

st j j j j jj j

j j j j

H H d f f+ +

− −

=  + 

 +  =    
. (9) 

 

By determination [1], in view of representation (9), we 

have the following expression for a volume of the ellipsoid: 

 

., 1 1, 2,

1 2

., 1 1, 2,

( ( , ))

(1)(det ( , ))

st j j j

st j j j

v E

v H

+

+

  =

=  
,  (10) 

 

where )1(v  – a volume of n -dimensional unit ball in 
n n

, ., 1det st jH +  – a matrix determinant ., 1

n n

st jH 

+  . With 

the use of the contraction (expansion) matrix let us 

represent the matrix (9) in the following form 

 

2

., 1 1 2,

1

2, 1|1 1

( , )

( )
j

st j j j

j j j jj j j j

H

H R H f H−

+

−

++ +

  =

= 
, (11) 

 

where 2

1

1
( )

j
j jj j

R H f R−

−

+
=  – a stretch-contract 

operator in the direction 
1

1 jj j
H f−

+
. 

 

( ) ( ) ( )2

1 2 1

1 1
1

j
j j j jj j j j

R H f I P H f−

− − −

+ +
= − −  ,(12) 

 

where ( )
1 T 1

1 11

1 T 1

1

j jj j j j

j j jj j

j jj j

H f f H
P H f P

f H f

− −

+ +−

+ −

+

= =  

− projection matrix. 

In (12) 
n nI   – a unity matrix and 

 

1,2 2

2,

1
j

j j

j

−


 = + 


,   (13) 
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where 

 
2 T 21

1|j jj j jf f dH
−
+ = .  (14) 

 

In view of the matrix property of the stretch-contract 

operator  

 

2

2-1
1|det ( )

j
j j j jR fH−

−
+

= , (15) 

 

for volume (10) let us find 

 
/2 1

., 1 1, 2, 2, 1|( ( , )) (1) detn

st j j j j j j jv E v H−

+ +  =   . (16) 

 

Statement. Let j

+  be a positive equation root 

 
2 2 (( 1) 1) 0j j jn n +  −  − = ,  (17) 

 

then optimal values 
*

1, j  and 
*

2, j  of parameters 1, j  and 

2, j , on which a minimal value of volume (16) of the 

approximating ellipsoid is achieved, are connected among 

themselves by ratio: 

 
*

2,

*

1,

j

j

j

+


 =


,   (18) 

 

that in view of limitation 
1 1

1 2 1 21, 0, 0− − +  =      

gives 

 

* *

1, 2,

1
, 1

j

jj j

j

+

+

+

+ 
= = +  


.  (19) 

 

The proof of statement follows directly from a 

necessary condition of function minimum (10) in view of 

limitation 
1 1

1 2 1 21, 0, 0− − +  =     . 

In new designations let us reformulate expression (9) as 

follows: 

 

2
T

1 | 1(1 )j j j j j j

j

d
H H f f+

+ + +

 
= +  +   

. (20) 

 

For 1n  -dimensional case of perturbation actions, 

when there is a perturbation action by more than one phase 

coordinate, it is more convenient to limit perturbation 

actions not by deviation of the 
1,j j d    vector 

module, but an ellipsoid. The matrix of this ellipsoid will be 

also symmetrical and nonnegative definite, and its rank will 

be equal to the number of phase coordinates, by which 

perturbation acts. At any combination of perturbation 

actions a vector of perturbations is always limited by the 

named ellipsoid. 

To illustrate this case let us reformulate (9) as follows, 

taking into account that 
1

112 )1( −−=  : 

 
1

., 1 1, ., 1, 1, .,

T T

., ., ., .,

( 1) ,

0, 0

st j j st j j j dst j

st j st j dst j dst j

H H H

H H H H

−

+ =  +   −

=  = 
.  (21) 

 

In (21) it is designated: .,dst jH  − ellipsoid matrix 

limiting a disturbance vector. It should be noted that 

.,dst jH  matrix can be degenerated − its rank is equal to the 

number of phase coordinates of the system by which the 

disturbance acts. 

In general case the stretch-contract operator is 

represented as follows [9]: 

 

( )

( )

2

1 1

., ., .,Β

2 T 1 T

1

( 1)

( )

j
j n st j dist j st j

j

n j m j j j j

R G I H H H

I G I G G G

−

− −

− −

= + =
 −

= − −

. (22) 

 

2 T1
Β

( 1)
j m j j

j

I G G− = +
 −

,  (23) 

 

where 1,j j =  ; 
1

., ., .,j st j dst j dst jG H S−=  ; 

., .,,m m

dst j dst jm rankH  =  − a diagonal matrix of 

nonzero eigenvalues of .,dst jH ; .,

n m

dst jS   matrix − a 

matrix of eigenvectors of the .,dist jH  matrix corresponding 

to nonzero eigenvalues. Finding of the   optimal value, 

which supplies an approximating ellipsoid (21) of minimum 

volume requires a solution of algebraic equation 1n+ - 

power, in which there is the only positive root, that is an 

optimal value j  [8, 9]: 

 

1 ( ),

( ), ( ),

1
;

( 1)

0 ,1 ; 0,

n

i j i j j j

i j i i j

n

i m m i n

=

=
 +   +

     =  


.   (24) 

 

There are no fundamental differences in an action of the 

stretch-contract operator in one-dimensional and 

multidimentional cases, therefore let us give the required 

explanations of its operation to facilitate perception by 
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using a one-dimensional case that is represented in Figs. 2 

and 3. 

 
Figure 2. Geometric representation of the space stretch-

contract operator 

 

 
Figure 3. Compress a circle into an ellipse. 

In Fig. 2 axes 1, jx , 2, jx  are the principal axes of the 

ellipsoid 1|j jE + . The vector jf  determines the direction of 

the disturbing effect. From Fig. 1, it becomes clear that if 

the vector jf  coincides with the principal axes of the 

ellipsoid 1|j jE + , the deformation (stretch-contract) of the 

approximating ellipsoid ., 1st jE +  before bringing it to its 

minimum volume will be carried out by the stretch-contract 

operator ( )1

., 1 j jst j j
R H f R−

+
=  in the direction of the 

axes 1, jx , 2, jx , since the vector jf  in this case is an 

eigenvector of the operator jR  and, as can be seen from 

(11), (12), the approximating ellipsoid ., 1st jE +  has the 

same principal axes as 1|j jE + . However, due to the 

arbitrary direction of the disturbance vector jf relative to 

the main axes of the ellipsoid 1|j jE + , the stretch-contract of 

the approximating ellipsoid for the minimum 

approximation of the Minkowski sum of the indicated two 

sets will not be carried out exactly either along the main 

axes of the ellipsoid ., 1|st j jE +  or in the direction of the 

vector jf . The direction of the stretch-contract in the case 

of only one disturbing factor is determined from the 

analytical derivation (11), (12) as 
1

., 1 jst j j
H f−

+
. From 

relation (13) it follows that 
2 1j

−  , and further 

0 1j   . 

Consider an arbitrary vector jx  belonging to the state 

space, in which the family of ellipsoids approximating the 

sum (8) is located. This vector can be decomposed into two 

orthogonal vectors: j jP x lying on the axis 
1

., 1 jst j j
H f−

+
 

and a vector ( )j jI P− x  lying on the axis defined by the 

expression 
T 1

., 1
0j jst j j

H f−

+
=x . Under the action of the 

operator jR , the projection of the vector jx  onto the axis 

1

., 1 jst j j
H f−

+
 will decrease and amount to j j jR x . The 

projection of the vector jx  onto the orthogonal axis will 

not undergo any changes. Fig. 3 shows the deformation of a 

circle in the direction defined jf  in an ellipsoid. We can 

assume that there is a mapping of the circle from space X  

into space Y . In this case, as follows from expressions (9), 

(11), the ellipsoid is scaled in such a way that the necessary 

condition ., 1| ., . 1st j j dst j st jE H E+ ++   and sufficient 

condition for the tangency of the sets ., 1| .,st j j dst jE H+ +  

and . 1st jE +  are satisfied at the 2n  points [9], where is the 

dimension of the state space. For the multidimensional 

case, the expressions will be more complex, but their 

essence will not change. 
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IV. NUMERICAL SIMULATION 

We carry out a numerical simulation of evolution of the 

approximating ellipsoid in MATLAB and compare the 

obtained parameters of the ellipsoid − the length of its 

semiaxes, with those of the ellipsoids optimal according to 

other criteria, namely, according to the sum of squares of its 

semiaxes [19], and according to the sum of the fourth 

powers of its semiaxes [20]. From a mathematical point of 

view, the main features of ellipsoidal approximation of the 

sum of two ellipsoids according to these criteria, including 

a minimum volume criterion, have been considered in [20]. 

We compare them in view of their use for estimation of 

uncertainty. 

We use formulas (14), (17), and (20) to calculate a 

minimum volume ellipsoid. To obtain an approximating 

ellipsoid with a minimum sum of squares of its semiaxes, 

we use formula [19]: 

 

T 2 1

. 1|(trace )j j j st j jf f d H+ −

+ = . (25) 

 

It should be noted that when the disturbing action has 

not an interval, but an ellipsoidal restriction, that is, it is set 

by an ellipsoid with the .,dst jH matrix, .,dist jtraceH  is 

substituted in the expression (25) for
T 2

j jf f d . 

To obtain an approximating ellipsoid with the minimum 

sum of the fourth powers of its semiaxes, the only positive 

root of the cubic equation [20] should be found: 

 
3 2 0j j j j j j jD B B C +  −  − = ,  (26) 

 

where: 
2

.,j dst jC traceH= , ., 1| .,( )j st j j dst jB trace H H+= , 

2

., 1|j st j jD traceH += . 

Obtaining the approximating ellipsoids minimum by the 

stated criteria – volume, a sum of squares and a sum of 

fourth powers of the principal semiaxes, differs in 

computational complexity and requirements for summable 

ellipsoids. It is also obvious that the resulting 

approximating ellipsoids will be different. All of these 

features are considered below. 

It is easy to notice that the simplest way from the 

computational point of view is to obtain an approximating 

ellipsoid with the minimum sum of squares of the principal 

semiaxes. With the increase in the dimension of summable 

ellipsoids, an expression (25) remains unchanged – only the 

number of summable components under the square root 

sign increases. In practical use, the expression (25) can be 

considered as independent of the dimension of summable 

ellipsoids. 

It is more difficult to obtain an approximating ellipsoid 

with the minimum sum of fourth degrees of the principal 

semiaxes, as for this purpose it is necessary to find the roots 

of a cubic equation (26) and to search among them for the 

unique real positive root. However, computational 

complexity of solving the equation (26) with the increase in 

the dimension of summable ellipsoids increases only due to 

the number of summable components for obtaining 

coefficients of the cubic equation, and in practical use it can 

be considered as independent of the state-space dimension. 

Finding an approximating minimum volume ellipsoid, 

as follows from (24), depends on the dimension of 

summable ellipsoids [9], and in case when both summable 

ellipsoids have dimension 3 and higher, is the most 

complex. However, in the important special case (17), when 

one of the summable ellipsoids is degenerated into a 

segment, computational complexity of finding an 

approximating minimum volume ellipsoid takes an 

intermediate position between finding the minimum 

ellipsoids by methods (25) and (26), respectively. 

One more property of the approximating minimum 

volume ellipsoid should be noted. If to expose two initial 

summable ellipsoids to nondegenerate transformation, i.e. 

to approximate by an ellipsoid minimum in volume, which 

is subjected to the inverse transformation, the resulting 

ellipsoid will coincide with the minimum volume ellipsoid 

for the case of non-transformed summable ellipsoids [1]. 

For the criteria according to (25) and (26), this does not 

take place except for the special case when the summable 

ellipsoids are similar. 

As for the restrictions to summable ellipsoids, the 

general restriction for methods (24), (25), (26) is that none 

of the summable ellipsoids can be degenerate to a point [1], 

[11, 20]. Thus, if such a case can occur, a restriction shall 

be provided in the algorithm. 

Only for the method (24) proposed in this paper there is 

a requirement of nondegeneracy of at least one of the 

ellipsoids. This follows from the expression (11), in which 

it is necessary to use an inverse matrix of one of the 

summable ellipsoids. For methods (25), (26), there is no 

such a restriction as a trace of the nonnegatively definite 

matrix with at least one nonzero eigenvalue will be 

positive, and expressions (25), (26) will make sense. 

Thus, for the special case considered in this paper, 

which is important for practice – approximation of the sum 

of an ellipsoid and a segment, there are no practical 

differences in computational complexity as compared to 

approximation methods (25), (26). It is easy to satisfy the 

requirement of nondegeneracy for one of the summable 

ellipsoids either as shown in [9], or by changing a zero 

eigenvalue of the matrix to a small value exceeding the 

accepted accuracy of calculations in the algorithm. 

To compare the properties of approximating ellipsoids 

obtained by methods (17), (25), and (26), let us carry out 

numerical simulation. 

Let 
.,01

diag[1.0,1.0]
st

H =  be a diagonal matrix,

T[1.0; 0.0]jf = , 1.0d = . 0ju = , 0j T  . Next, we 

assume that [1;1]A diag . Then .,2|1 .,1st stH H  and so 

on. 
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Having performed calculations for ten steps, we 

summarize the obtained parameters − lengths of semiaxes of 

the ellipsoids minimal by their criterion − in tables 1 and 2. 

Table 1. Lengths (in arbitrary units) of the semiaxes of 

the ellipsoids in the direction of the disturbance vector 

S
tep

: 

Volume 
minimized 

ellipsoid 

Sum of semiaxes 
squares minimized 

ellipsoid 

Sum of semiaxes fourth 
powers minimized 

ellipsoid 

1 2.1213 2.0301 2.0087 

2 3.2112 3.0402 3.0101 

3 4.2913 4.0452 4.0540 

4 5.3665 5.0483 5.0106 

5 6.4388 6.0503 6.0107 

6 7.5092 7.0518 7.0107 

7 8.5781 8.0529 8.0107 

8 9.6461 9.0538 9.0107 

9 10.7132 10.0544 10.0107 

10 11.7797 11.0550 11.0107 

 

Table 2. Lengths (in arbitrary units) of the semiaxes of 

the ellipsoids in the perpendicular direction to the 

disturbance vector 

S
tep

: 

Volume 

minimized 
ellipsoid 

Sum of semiaxes 

squares minimized 
ellipsoid 

Sum of semiaxes fourth 

powers minimized 
ellipsoid 

1 1.2247 1.3066 1.3526 

2 1.3869 1.5538 1.6385 

3 1.5176 1.7667 1.9848 

4 1.6287 1.3066 2.1016 

5 1.7262 1.5538 2.2994 

6 1.8137 1.7667 2.4817 

7 1.8934 1.9566 2.6517 

8 1.9669 2.1297 2.8115 

9 2.0352 2.2897 2.9628 

10 2.0992 2.4392 3.1068 

 

To make the analysis of simulation results convenient, we 

present the graphs of lengths of the semiaxes for each 

ellipsoid for all steps. 

 

Figure 4. Lengths (in arbitrary units by vertical axis) of the 

semiaxes of the ellipsoids depending on the step (by 

horizontal axis) in the direction of the disturbance vector 

(see table 1). 

 

Figure. 5. Lengths (in arbitrary units by vertical axis) of the 

semiaxes of the ellipsoids depending on the step (by 

horizontal axis) in the perpendicular direction to the 

disturbance vector (see table 2). 

In Figs. 4 and 5 the triangular marker indicates the 

graphs of lengths of the semiaxes of the approximating 

ellipsoid with a minimum volume; the pentagram indicates 

the graphs of lengths of the semiaxes of the approximating 

ellipsoid with a minimum sum of squares of its semiaxes; 

the simple unmarked line indicates the graphs of lengths of 

the semiaxes of the approximating ellipsoid with the 

minimum sum of the fourth powers of its semiaxes. 

V.  DISCUSSION 

Now we analyze the results from the tables and graphs. 

First, we remember the assumed conditions for evolution of 

the approximating ellipsoid: the initial ellipsoid is a full-

dimensional ball (to simplify the simulation, a plane case is 

taken – a circle); the disturbing action has a constant 

direction; dynamics of the system is that the ellipsoid is not 

subject to any transformations from the system itself. Then 

the .,st jH  matrix for any j  remains diagonal, which will 

facilitate the analysis of impact on the approximating 

ellipsoid of a value and direction of the disturbance action. 

It could be seen from Table 1 that the semiaxis of the 

minimum volume ellipsoid is the biggest in the direction of 

the disturbance vector in comparison with the semiaxes of 

ellipsoids optimal according to other criteria. It is 

analytically obvious and can be shown as follows. It 

appears for 
2

j  
from the expression (14) that in case of 

increase in one of the eigenvalues (a square of the semiaxis, 

in the direction of which the disturbance vector acts) of the 

., 1|st j jH +  matrix the 
2

j  value decreases. Further 

considering the equation (17) we can see that with 

decreasing the 
2

j  value the j

+  value will also decrease. 

In its turn, as is seen from expression (20), it will lead to the 

increased contribution of the disturbing action to one of the 

eigenvalues of the .,st jH  matrix – a square of the semiaxis 
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of the ellipsoid, along which the mentioned disturbing 

action acts. The approximating ellipsoid will stretch in the 

direction of the disturbance action, respectively. As a 

volume of the ellipsoid is directly proportional to a 

determinant of the matrix that determines it, that is, to the 

product of its eigenvalues, it becomes obvious that all other 

semiaxes of the ellipsoid should be as small as possible. 

More details on properties of a volume of the 

multidimensional ellipsoid can be found in [16-18]. 

This is not the case with minimization of the sum of 

eigenvalues of the matrix of the approximating ellipsoid 

(squares of its semiaxes) raised to any positive power. In 

case when the sum of ellipsoids for some reason, for 

example, due to degeneration of the initial state ellipsoid 

into a segment and coincidence of directions of this 

segment and the disturbance vector, also represents a 

segment, the approximating ellipsoid will be a full-

dimensional (nonsingular) ball. However, in case of 

approximation of the sum of two full-dimensional ellipsoids 

by Minkowski, the approximating ellipsoid optimal 

according to a criterion of the minimum sum of powers of 

its semiaxes will be close to a minimum volume ellipsoid 

by the lengths of its semiaxes. 

VI.  ANALYSIS OF SIMULATION RESULTS 

The stretch-contract operator contributes a lot to solving 

problems of approximation of convex sets. For example, if 

there is an insignificant divergence between the directions 

of the biggest semiaxis of the initial ellipsoid and the 

biggest external influence (the biggest dimension of the 

second convex set in the Minkowski sum), then, as is 

shown in this paper, the approximating minimum volume 

ellipsoid will also have the biggest semiaxis in the close 

direction. This analysis enables to make a decision on the 

use of an ellipsoid minimum right by volume for 

approximation of a convex set. In case when the direction 

of the external disturbance vector is close to orthogonal to 

the direction of the biggest semiaxis of the initial ellipsoid, 

then, according to Minkowski, the sum of certain positive 

power of semiaxes of the approximating ellipsoid can be 

taken as a criterion for approximation of the sum. 

It would seem that in the latter case it is much more 

advantageous to use minimization of the sum of powers of 

semiaxes of the approximating ellipsoid as even a 

degenerated case – the sum of two segments having 

different directions, can be approximated. There are more 

complex calculations for minimization of the sum of fourth 

powers of the approximating ellipsoid as compared to 

minimization of the volume − finding the unique positive 

root of a cubic equation − only if 2n =  for one set and 

1n =  for the second set. When dimension of each 

summable set is 2n  , in order to obtain the minimum 

volume ellipsoid, it is necessary to find roots of the 

algebraic equation of power “four” and larger. However, 

when it comes to guaranteed estimation, the situation is 

different. For guaranteed estimation, it is often preferable to 

have some ‘reassurance’ in the direction of the disturbance 

action. This is especially pressing in case of increase in the 

disturbance value without being timely detected by an 

external observer, or when it comes to human safety. 

However, the directions in which the disturbance does not 

act can be estimated without ‘reassurance’. This is the case 

when the volume of the ellipsoidal estimate is minimized 

(see table 2 and figure 5). This will enable to avoid 

reassurance in secondary directions of, for example, object 

movement, or in the secondary control channels, especially 

when the system state is simultaneously estimated by 

different types of canonical convex sets [21, 22]. 

Degeneracy can be eliminated by adding small values of 

zero eigenvalues to the ellipsoid matrix. 

This paper seems to be much easier for understanding the 

fact of the matter than the paper [24], although in no way this 

paper substitutes or even supplements it. 

VII.  CONCLUSIONS 

The above results were obtained by using three sections of 

analysis: convex, mathematical and matrix, and were 

further demonstrated by simulation. 

The geometric and matrix interpretation of the stretch-

contract operator enables with the accuracy sufficient for 

practice to estimate the uncertainty relations for different 

parameters or state variables of a certain process or a 

moving object. Based on this assessment, it is quite easy to 

select the design parameters of the process under estimation 

or object to meet the specified requirements. It also gives 

instructions for the use of approximating ellipsoids obtained 

according to different criteria. 

The limitations on the scope of this paper do not enable 

to give a sound example of the application of the 

approximation method proposed in the paper, so let’s 

restrict ourselves to an overview. 

The comparative characteristics of various types of 

canonical sets used to approximate uncertainty have been 

given in [23]. There are also practical examples. For 

instance, the interaction between a robot and a person – 

when it is necessary to calculate a safe zone in which the 

robot manipulator can move. Autonomous car movement 

on the road – there is a great responsibility for the safety of 

both passengers and other vehicles on the road. 

Referring to the handbook [11], it is easy to notice 

similar problems in calculation of safe maneuvering of 

ships and aircrafts in the area of busy water or air traffic, 

respectively. In these cases, the main uncertainty appears 

along the motion vector, and an ellipsoidal estimate, which 

considers uncertainty by both main phase coordinate and 

secondary phase coordinates, is required. 

The developed method can also be applied to the 

nonlinear problems after some minor changes [25, 26]. 

In the future, the author intends to devote a paper to a 

specific application of the method proposed herein for 

calculation of safety zones of moving objects, with the 

analysis of safety zone dynamics. 
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