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 ABSTRACT A simple and easy to implement but very effective algorithm for solving real-value parameter 

optimization problems is introduced in this paper. The main idea of the algorithm is to perform a local search 

repeatedly on a prospective subregion where the optimal solution may be located. The local search randomly 

samples a number of solutions in a given subregion. If a new best-so- far solution has been found, the center of the 

search subregion is moved based on the new best-so-far solution and the size of the search subregion is gradually 

reduced by a predefined shrinking rate. Otherwise, the center of the search is not moved and the size of the search 

subregion is reduced using a predefined shrinking rate. This process is repeated for a number of instances so that 

the search is focused on a gradually smaller and smaller prospective subregion. To enhance the likelihood of 

achieving an optimal solution, many rounds of this repeated local search are performed. Each round starts with a 

smaller and smaller initial search space. According to the experiment results, the proposed algorithm, though very 

simple, can outperform some well-known optimization algorithms on some testing functions.  

 

 KEYWORDS Real-value Parameters; Function Optimization; Repeated Adaptive Local Search; Shrunk 

Subregion. 

 

I. INTRODUCTION 

EAL-value parameter Function Optimization plays a 

key role in solving many problems in Machine 

Learning, Science and Engineering. Some problems may 

have hundreds of real parameters to be considered for 

optimization. Many evolutionary optimization techniques 

including Genetic Algorithm, Evolutionary Strategy, 

Particle Swarm Optimization, Artificial Bee Colony and 

Differential Optimization have been proposed for solving 

real-parameter optimization problems [2, 9, 15, 21-24]. Most 

algorithms work well for problems with small numbers of 

parameters, but may fail to reach global optima when the 

number of parameters becomes very large [10]. Algorithm 

performance also depends on the complexity of the 

landscape for problems, e.g. modality, separability, 

ruggedness and deceptivity [16]. Hence, there is a need for 

an effective optimization algorithm to resolve high-

dimensional, real-parameter problems.  

A search strategy for an optimization algorithm needs to 

balance between exploration and exploitation pressures [17-

20]. More emphasis on exploration can lead to a better 

chance of convergence to a global optimal solution, but such 

convergence would take more time to achieve. While more 

emphasis on exploitation can lead to faster convergence, the 

possibility of premature convergence to local optima may 

increase. To balance the two conflicting pressures, a good 

search strategy should encourage exploration during the 

early stages of the search and gradually encourage 

exploitation during the later stages of the search. Hence, the 

possibility of reaching the global optimal solution becomes 

higher while the convergence is not too slow to achieve. 

Based on the aforementioned search strategy, a new 

algorithm for solving real parameter optimization problems 

is proposed in this paper. The algorithm is based on repeating 

a local search for global optima around the center of a 

R 
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potential subregion for the given search space. To encourage 

exploration during the earlier stages of the search, the initial 

search subregion covers the entire given search space. The 

local search is performed repeatedly to enhance the 

possibility of finding global optima. After finishing a local 

search, the subregion is gradually shrunk to a smaller 

subregion that may contain the global optima. Therefore, 

high exploration and low exploitation are endured during the 

early stages, while low exploration and high exploitation are 

endured during the later stages of the search, when the 

subregion becomes very small. The process is repeated for a 

number of iterations, after which a new round of repeated 

local search starts on the subregion with the current center, 

but with a smaller initial size than that of the previous one. 

Due to the stochastic process of the solution sampling in the 

algorithm, it is common to run the algorithm for many trials, 

and the best solution among the trials is reported. 

In experiments, a number of benchmark functions were 

carried out to evaluate the performance of the proposed 

algorithm. The experimental results showed that the 

proposed algorithm was very effective in finding optimal 

solutions for the functions. The optimal solutions were also 

compared with those results from well-known optimization 

algorithms [1].  

II. PROPOSED ALGORITHM 

To search for the optimal solution to a problem in a large 

search space, the proposed algorithm first defines an initial 

potential subregion to be searched as the given entire search 

space, then pursues multiple rounds of search for the optimal 

solution in the moved and shrunk subregion. Thus, high 

exploration and low exploitation are ensured in the earlier 

rounds. In the later rounds, low exploration and high 

exploitation become prominent as the subregion becomes 

smaller and smaller. For each round of the search, a local 

search is performed repeatedly for a number of iterations. 

Each local search samples a number of random solutions 

located within the subregion. If the fittest solution among the 

sample solutions is fitter than the best-so-far solution, the 

subregion is shifted so the new solution becomes the center 

of the subregion as well as the best-so-far solution, otherwise 

the center remains stationary. The size of the subregion is 

gradually decreased to reduce the scope of the next iteration 

of the local search, thus gradually enhancing the exploitation 

of the search. The shrinking rate of the subregion size is 

adaptive depending on the progress of the search. The fast 

predefined shrinking rate, α, is used if there is progress in the 

search, i.e. the center is moved to a new fitter solution, as 

seen in Fig. 1. Otherwise, the slower shrinking rate, β, is used 

instead so that the size of the subregion is reduced at a very 

low rate, as seen in Fig. 2.  

For the sake of simplicity, a subregion size is defined by 

the width of the subregion for each dimension. The width of 

the subregion for each iteration of the local search can be 

calculated as follows: 
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where  

  is a fast predefined shrinking rate and   is a slow 

predefined shrinking rate, where 1.0    e.g. 1.1 = , 

1.01 = . ( )iW j  is the width of the jth dimension of the 

subregion at the ith iteration of the local search. 
1( )W j  is the 

initial width of the jth dimension of the subregion. 
 

 

Figure 1. A subregion is shifted with its new center C at a 

new best-so-far solution and then shrunk with a fast 

shrinking rate.  

 

Figure 2. A subregion is stationary as no new best-so-far 

solution has been found and so it is shrunk with a slow 

shrinking rate. 

It can be seen that the subregion size is reduced more 

quickly by the reduction factor, which increases 

exponentially, when a new best-so-far solution is found and 

the center of the subregion is moved. On the other hand, the 

subregion size is reduced very slowly by a much smaller 

shrinking rate when a new best-so-far solution is not found 

and the center of the subregion is not moved. Since the center 

of subregion is moved during the iterative local search, it is 

possible that some parts of the subregion need to be chopped 

off as they do not fit within the given search region. Hence, 

the widths of the subregion need to be adjusted accordingly. 

Once a round of the local search completed, a new round 

of the repeated local search starts to increase the likelihood 

of reaching the global optima. The initial center of the 

subregion is set to the best-so-far solution and the initial size 

of the subregion is reduced adaptively in the same way as in 

the local search process as follows: 
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where 
iIS  is the reduction factor to be used for the ith round 

of the repeated local search; 
1iIS −
 is the reduction factor that 

has been used for the previous round;   is the fast 

predefined shrinking rate and   is the slow predefined 

shrinking rate. These two rates are the same ones used in the 

local search; ( )iIW j  is the initial width of the jth dimension 

of the subregion for the ith round of the local search; ( )IW j  

is the initial width of the jth dimension of the given search 

region; 
iIS  is the initial reduction factor for the first round of 

the local search and equals 1.0. 

It is possible that some parts of the initial subregion need 

to be chopped off as they do not fit within the given search 

region. Hence, the initial widths of the subregion need to be 

adjusted accordingly. Fig. 3 shows an example of how the 

width of the subregion is reduced gradually and adaptively 

during each round of the iterative local search. It can also be 

seen from the figure that the initial width of the subregion is 

reduced in a similar fashion after each round of a local 

search. Therefore, the search is repetitive and continually 

focuses on smaller and smaller subregion until an optimal 

solution, possibly the global one, is reached. It is also 

possible to execute this repeated local search process for 

many independent runs in order to further enhance the 

convergence likelihood to the global optima. 

 

Figure 3. An example of how the width and the initial width 

of the search subregion are gradually and adaptively 

reduced. 

The search process of the proposed algorithm can be 

described as a stochastic process represented by a Hidden 

Markov Model. States of the model correspond to states of 

the search at the beginning of each iteration. Each state can 

be described by the upper bound and lower bound values of 

all parameters, that define the boundary of the search 

subregion, as well as, a flag stating whether the global 

optimal solution lies within the search subregion or not. The 

flag is hidden since the position of the global optimal 

solution is unknown. The observation of the model is the 

fitness value of the solution at the center of the subregion. 

A state transition of the model occurs between two 

consecutive iterations of the same round of the local search, 

or between the state of the last iteration of one round and the 

first iteration of the next round. The new state of a transition 

is dependent on how the new center and new boundary of the 

search subregion are determined. The goal of the search is to 

reach the final state which subregion is very small but still 

contains the global optimal solution.  

The local search picks the best-so-far solution to be the 

new center of the search subregion. It is expected that the 

new center is getting closer to the global optimal solution, 

therefore, it would move the search subregion toward the 

optimal solution. The subregion is also shrunk gradually 

using small adaptive shrinking rates so the subregion gets 

smaller and smaller while there is a good chance that the 

subregion still contains the global optimal solution. After 

each round of the repeated local search, it is possible that the 

search subregion may miss the global optimal solution. 

Therefore, a new round of the repeated local search is 

performed with an initial size smaller than that of the 

previous round to narrow down the scope of the search. With 

many rounds of this repeated local search, there is a high 

possibility that the desired final state would be reached. 

III. EXPERIMENTS AND RESULTS 

Six real parameter functions were used to evaluate the 

performance of the proposed method. They comprised both 

unimodal and multimodal functions as follows: 

f1: Sphere function (unimodal) 

f2: Schwefel 2.22 problem ( unimodal) 

f3: Rosenbrock function ( multimodal ) 

f4: Rastrigin function ( multimodal ) 

f5: Griewank function ( multimodal ) 

f6: Ackley function ( multimodal ) 

A set of experiments were carried out to evaluate the 

performance of the proposed algorithm with the following 

parameter settings: 

Fixed Parameters 

Number of independent runs = 25 

Number of rounds of execution for the repeated local search 

(P) = 1000 

Varying Parameters 

To study the effects of each varying parameter on the 

performance of the proposed algorithm, the other parameters 

are fixed at a baseline parameter setting as follows: 

Number of Dimensions (D) = 100 

Fast Shrinking Rate (ɑ) = 1.1 

Slow Shrinking Rate (β) = 1.01 

Number of solutions sampled for each local search (N) = 

100 

Number of repetitions for the local search (M) = 100 
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Table 1. Varying the number of dimensions (D) 

Function D = 25 D = 50 D = 100 D = 500 

Best Mean SD Best Mean SD Best Mean SD Best Mean SD 

f1 2.86E-17 2.95E-15 4.70E-15 1.80E-15 2.71E-12 4.13E-12 0 0 0 0 0 0 

f2 1.62E-06 8.48E-06 5.81E-06 2.23E-10 1.15E-08 1.27E-08 8.53E-14 1.15E-13 9.78E-15 167.87 177.36 4.81 

f3 7.76E-11 31.75 10058.30 31.75 2985.77 10058.31 90.79 5495.25 10861.84 676.85 242940.22 890655.99 

f4 8.95 19.88 5.33 60.84 88.93 16.03 308.20 378.47 48.70 5981.01 6764.93 355.72 

f5 7.77E-16 6.14E-14 1.20E-13 0 4.14E-03 5.69E-03 0 1.97E-03 3.56E-03 6.37E-05 1.73E-03 4.35E-03 

f6 7.96E-09 4.58E-08 3.18E-08 4.31E-08 1.13E-06 1.21E-06 4.93E-14 6.14E-14 5.12E-15 2.20E-13 2.33E-13 8.35E-15 

 

From the experimental results shown in Table 1, it can be 

seen that the proposed algorithm can perform very well, even 

when the number of dimensions is increased for some testing 

functions. Therefore, the optima convergence for the 

proposed algorithm would probably depend very much on 

the complexity of the landscape of the search region. 

 

Table 2. Varying the Fast Shrinking Rate (ɑ) 

Functio

n 

ɑ = 1.05   ɑ = 1.1   ɑ = 1.2   ɑ =1.5   

Best Mean SD Best Mean SD Best Mean SD Best Mean SD 

f1 2.21E-10 4.16E-09 8.21E-09 0 0 0 0 0 0 96464.36 151061.56 26632.55 

f2 1.89E-06 5.44E-06 2.40E-06 8.53E-14 1.15E-13 9.78E-15 53.59 71.62 11.69 152.45 174.65 10.15 

f3 81.69 7478.75 16852.97 90.79 5495.25 10861.84 203.89 590028.14 1063736.62 54266447963.
21 

133147772769
.20 

46918668735.
16 

f4 289.31 362.60 37.27 308.20 378.47 48.70 377.79 498.93 62.69 90692.28 154720.55 33702.27 

f5 8.88E-12 1.97E-03 4.67E-03 0 1.97E-03 3.56E-03 3.33E-16 4.73E-03 7.96E-03 23.97 39.61 10.12 

f6 6.52E-06 2.05E-05 8.64E-06 4.93E-14 6.14E-14 5.12E-15 5.28E-14 6.46E-14 4.35E-15 19.97 19.99 0.01 

 

From the experimental results shown in Table 2, it can be 

seen that the repeated local search can miss the optimal 

solution if the fast shrinking rate gets too large and the search 

subregion is shrunk too quickly. On the other hand, if the 

search subregion is shrunk too slowly, it may take more time 

and probably require a higher number of solutions to sample 

in order to converge to an optimal solution. From the results, 

the optimal fast shrinking rate for most of the testing 

functions is around 1.1. 

 

Table 3. Varying the Slow Shrinking Rate (β) 

Function β =1.005 β =1.01 β=1.05 β = 1.10 

Best Mean SD Best Mean SD Best Mean SD Best Mean SD 

f1 1.71E-11 2.68E-09 6.39E-09 0 0 0 0 0 0 0 0 0 

f2 1.78E-12 8.77E-10 3.36E-09 8.53E-14 1.15E-13 9.78E-15 1.05E-04 1.1 2.27 37.62 74.46 20.67 

f3 92.89 9925.52 15781.58 90.79 5495.25 10861.84 92.09 11518.28 16069.47 87.79 7436.93 13447.97 

f4 259.49 352.18 52.10 308.20 378.47 48.70 405.63 489.66 49.98 505.05 626.10 72.68 

f5 0 2.46E-03 4.00E-03 0 1.97E-03 3.56E-03 0 1.97E-03 3.55E-03 1.11E-16 3.35E-03 5.21E-03 

f6 1.34E-06 4.48E-05 4.85E-05 4.93E-14 6.14E-14 5.12E-15 6.35E-14 6.95E-14 4.68E-15 20.96 20.96 7.11E-15 

 

From the experimental results shown in Table 3, it can be 

seen that the repeated local search can miss the optimal 

solution similarly to the case of the fast shrinking rate when 

the slow shrinking rate gets too large and the search 

subregion is shrunk too quickly. On the other hand, if the 

search subregion is shrunk too slowly, it can take more time 

and probably require a higher number of solutions to sample 

in order to converge to an optimal solution. From the results, 

the optimal slow shrinking rate for most of the testing 

functions is around 1.01. It should be noted that when the 

slow shrinking rate is set to be the same as the fast shrinking 

rate, i.e. there is no slow shrinking rate in this case as  

α = β = 1.10, the algorithm converges to a poor solution for 

all testing functions except f1 function. This means the 

adaptive scheme, which employs both fast and slow 

shrinking rates for adjusting the shrinking rate, can help the 

local search achieve much better solutions. 

Table 4. Varying the number of randomly sampled solutions for each local search (N) 

Function N = 50 N = 100 N = 200 

Best Mean SD Best Mean SD Best Mean SD 

f1 0 0 0 0 0 0 0 0 0 

f2 1.14E-13 6.19E-14 2.15E-01 8.53E-14 1.15E-13 9.78E-15 8.53E-14 9.78E-14 1.41E-14 

f3 92.34 11946.41 16500.34 90.79 5495.25 10861.84 90.72 4650.82 10543.46 

f4 265.45 427.07 86.76 308.20 378.47 48.70 309.19 357.43 37.11 

f5 0 3.94E-03 4.83E-03 0 1.97E-03 3.56E-03 0 4.04E-03 5.90E-03 

f6 5.64E-14 6.85E-14 4.82E-15 4.93E-14 6.14E-14 5.12E-15 4.57E-14 5.74E-14 4.98E-15 
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From the experimental results shown in Table 4, it can be 

seen that a better solution can be achieved by the proposed 

algorithm if more solutions are sampled for each local 

search, resulting in a higher chance of finding the optimal 

solution. 

 

Table 5. Varying the number of repetitions for the local search (M) 

Function M = 25 M = 50 M = 100 

Best Mean SD Best Mean SD Best Mean SD 

f1 0 1.92E-18 9.17E-18 1E-20 7.02E-17 1.68E-16 0 0 0 

f2 4.78E-01 4.02 2.96 1.14E-13 1.19E-13 1.14E-14 8.53E-14 1.15E-13 9.78E-15 

f3 92.85 16042.80 46750.74 87.81 5586.96 12623.40 90.79 5495.25 10861.84 

f4 367.85 459.87 62.64 322.12 434.54 56.17 308.20 378.47 48.70 

f5 0 2.66E-03 5.02E-03 0 2.86E-03 5.29E-03 0 1.97E-03 3.56E-03 

f6 2.35E-12 7.48E-11 8.54E-11 2.69E-11 2.44E-09 2.68E-09 4.93E-14 6.14E-14 5.12E-15 

 

Table 6. Effects of the increases of the parameter values 

on the possibility of optima convergence for the 

proposed algorithm 

 

Comparisons of the optimal results achieved from the 

proposed algorithm against those achieved by some other 

well-known optimization algorithms are shown in Table 7. 

The results of the well-known algorithms, namely 

MABC[26], GOABC[27], CoDE[28,29], FA[30], BA[31], 

BSA[32,33,34], BDS[32,33,34], SDS[32,33,34] and 

PSCS[1] are based on [1]. The results are the mean optimal 

values for 30 runs. The number of dimensions is 50 and the 

total number of function evaluations for each run is at least 

2,000,000. The standard deviations of the results are shown 

in the parentheses. The proposed algorithm was executed for 

30 runs. The number of sampled solutions, N, was 200 and 

the number of repetitions, M, was 10. The total number of 

function evaluations for each run was at least 2,000,000. 

Table 7. Performance comparison between the proposed algorithm and others 

Algorithms f1 f2 f3 f4 f5 f6 
MABC 0 (0) 8.294e-012 

(7.675e-012) 
36.2419 (31.0792) 27.4042 (56.7605) 1.1191e-014 

(2.0167e-015) 
0(0) 

GOABC 4.590e-008 

(1.026e-007) 

0.3459 (0.1311) 4.98838e+002 

(8.0716e+002) 

1.1952 (2.1599) 5.2013e-004 

(9.2477e-004) 

0.0024 (0.0055) 

CoDE 0 (0) 9.093e-048 
(2.567e-047) 

0.3987 (1.2271) 0.4975 (0.9411) 4.4409e-015( 0) 0 (0) 

FA 7.465e-

101(7.142e-102) 

0.0532 (0.0251) 45.8660 (0.8307) 93.9239 (41.6611) 5.3468e-014 

(1.1621e-014) 

2.220e-017 

(4.965e-017) 

BA 2.7120e-005 
(3.023e-006) 

32.0319 (5.5715) 9.5638 (2.4789) 1.0328e+002 
(22.6817) 

16.7048 (0.7936) 18.7555 
(41.9249) 

BSA 2.201e-261 (0) 0.0309 ( 0.0266 ) 0.9966 (1.7711) 0.3482 (0.6674) 2.7355e-014 

(4.5343e-015) 

0.0013 (0.0033) 

BDS 0 (0) 2.293e -013 
(3.594e-013) 

9.8809 (20.8574) 0.0497 (0.2224) 1.0302e-014 
(3.3157e-015) 

0 (0) 

SDS 0(0) 1.319e-016 

(1.755e-016) 

5.264e-027 

(1.8936 e-026) 

0.8457 (1.2616) 1.3500e-014 

(2.9330e-015) 

8.6131e-004 

(0.0038) 

PSCS 0(0) 5.830e-020 
(1.301e-019) 

2.5590e-028 
(2.0639e-028) 

0 (0) 4.4409e-015 (0) 0 (0) 

Proposed 

Algorithm 

Mean  

Standard deviation 

Best  

ɑ, β 

 

 

0 

0 

0 

1.1,1.01 

 

 

5.7790e-014 

5.1018e-015 

5.6843e-014 

1.1,1.01 

 

 

7.6997e+03 

1.5834e+04 

37.8987 

1.05,1.01 

 

 

1.2533e+02 

24.9333 

80.5302 

1.05,1.005 

 

 

5.8290e-03 

6.5551e-03 

0 

1.1,1.01 

 

 

4.574e-014 

7.0459e-015 

3.5083e-014 

1.1,1.01 

 

From the experimental results shown in Table 7, the 

PSCS performed the best while the proposed algorithm 

outperformed some other algorithms e.g GOABC, BA and 

BSA for some test functions except f3 and f4. For these two 

functions, the proposed algorithm achieved variable results 

for different runs with high means and high standard 

deviations, though, the best solutions achieved by the 

proposed algorithm are much better than the means. So, for 
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some complex functions like these two functions, several 

runs are needed for the proposed algorithm to reach good 

optimal solutions. 

IV. DISCUSSION 

It should be noted that the proposed algorithm utilizes a 

sampling method for a local search. It does not need to 

maintain a population of solutions during the search. Hence, 

it requires very small amount of memory to run. The 

exploration and exploitation aspects of the search can be 

easily controlled by the number of sampled solutions and the 

shrinking rates. The high exploration of the search is 

achieved with a large number of the sampled solutions and/or 

very slow shrinking rates. While, the exploitation of the 

search is assured when fast shrinking rates are employed. 

However, according to the experiments, for a multimodal 

and very complex landscape functions, e.g. f3 and f4, the 

algorithm may need a number of runs with a large number of 

sampled solutions as well as very slow shrinking rates to 

reach good optimal solution. This can cause longer time to 

run the algorithm. To alleviate this problem, a parallel 

sampling technique may be used to do the local search so the 

computation can be speeded up.  

V. CONCLUSION 

In this paper, a simple but very effective algorithm for 

solving real-value parameter function optimization is 

proposed. The algorithm enhances the possibility of 

convergence to an optimal solution by repeating the local 

search many times on a gradually shrinking search 

subregion. The center of the subregion is also moved to the 

most recently found solution. The gradually shrinking size of 

the search subregion allows for the exploration of the search 

during the early iterations when the search subregion is still 

relatively large and gradually allows the exploitation of the 

search during later iterations when the search space becomes 

very small. The shrinking rate of the search subregion is also 

designed to be adaptive. A high shrinking rate is employed 

when a new best-so-far solution has been found. Otherwise, 

a small shrinking rate is used instead. This helps the local 

search to remain focused on the prospective subregion while 

at the same time not shrinking the size of the subregion too 

much, causing the search to miss the optimal solution. This 

iterative local search process is also repeated for many 

rounds. In each round, the best-so-far of the previous round 

is used as the initial center and the initial size of the search 

subregion is also reduced by an adaptive rate using the same 

strategy mentioned previously. According to the 

experiments, the algorithm outperforms some optimization 

algorithms and performs comparable with some others for 

some testing functions. However, the proposed algorithm is 

much simpler and easier to implement with very minimal 

memory requirements. 
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