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 ABSTRACT The accuracy of photovoltaic (PV) power generation forecast can seriously affect the penetration ability 
of PV power into the existing power grid, which is one of the key approaches to achieve emission peak, as well as 
realize carbon neutrality. In the conventional forecasting methods, Global Horizontal Irradiation (GHI), Diffuse 
Horizontal Irradiance (DHI), temperature, wind speed, rainfall, etc. are considered as the mainly factors to forecast the 
PV output power, but ignore the impact of PV power generation caused by the whole PV system’s decay over the 25–
30 years lifecycle. The ultraviolet (UV) index, which reflects the quantity of 10–400 nm irradiation, has a strong 
correlation with such decay and power generation. This paper proposes a novel PV power forecasting model that 
involving UV index in an artificial neural network, using Adam method to optimize the training process with the Keras-
tuner employed for optimization of the hyperparameters. Experiments demonstrate that the proposed model achieves 
more precise performance than conventional methods. 
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I. INTRODUCTION 

A. Background Information 
n recent years, the usage of renewable energy has attained 
increased importance around the world. The environmental 

and ecological problems caused by greenhouse emissions have 
led governments and environmental organizations to work on 
shutting down old thermal power plants and encouraging the 
development of energy from renewable power instead. 
Currently, one of the most reliable and applicable renewable 
energy solutions is photovoltaic (PV) power. 

However, the current power grid principle is that electricity 
production (power) and electricity consumption (load) should 
be equal. The disadvantage of PV is that the electricity 
generated by this means is not persistently stable, and it is 
difficult to use PV power independently. PV generation relies 
on solar radiation, so it is significantly affected by the weather 
and cannot be produced at night. 

To overcome these disadvantages of PV power and enable 
its optimal use in the current power grid, accurate forecasting 
of PV power is vital. With more accurate predictions of PV 
power, the power grid could be controlled and dispatched 
efficiently and stably [1], thereby significantly increasing the 
penetration rate of renewable power. 

B.  Literature Review 
Various methods of predicting the PV power output have been 
proposed. One type of forecasting approach involves applying 
historical data from the PV system to a time series model [2]. 
Regression model forecasts can be obtained by detecting the 
weights of individual data points to avoid outlier data having 
an adverse effect on the model [3]. Complex detailed models, 
which mainly use data from satellite measurements, can also 
predict the PV power [4], although the accuracy of the solar 
irradiation forecast plays a key role [5]. 

Artificial neural networks (ANNs) have become very 
popular in recent years for forecasting PV power, because they 
can easily handle nonlinear data sources, such as solar 
irradiation, ambient temperature, and humidity [6, 7]. 
Backpropagation neural networks (BPNNs) have also achieved 
good forecasting results. However, very few studies have taken 
ultraviolet (UV) data into consideration for enhancing the PV 
prediction accuracy. 

UV irradiation performs almost highest irradiation of 
energy density, shows at Fig. 1 below, which seriously 
degrades silicon PV cells, ethylene-vinyl acetate encapsulated 
film, glass, cables, and other electronic parts. Thus, it can be 
expected that the characteristics of the whole PV system will 
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be degraded by long-term exposure to UV irradiation [8]. 
Furthermore, as shows in Figs. 1, 2 below, that 200-400nm UV 
irradiation would contribute the power produce directly. Thus, 
using UV data in the forecasting model is likely to result in 
more accurate predictions, especially for long-term PV power 
generation [9]. 

 

Figure 1. the distribution of spectrum irradiation under Air 
Mass1.5, show the distribution of spectrum irradiation under 

Air Mass1.5 (marked blue), the spectrum irradiation of 
UV(10-400nm) exceed about 1.35 W/m2*nm-1, which is 
almost the highest power of full range of irradiation [10]. 

 

Figure 2. Quantum Efficiency of Silicon cell, shows the 
quantum efficiency of typical silicon cell at 200-400nm 

irradiation is 90%-95% [11]. 

The remainder of this paper is organized as follows. Section 
II introduces the research methodology, including the 
forecasting approach, dataset, and performance metrics. 
Section III presents the forecasting results given by the 
proposed model and analyzes the improvement over 
conventional models. Finally, the conclusions to this study are 
given in Section IV. 

II.  RESEARCH METHODOLOGY  

A.  FORECASTING MODEL 
The proposed model is essentially an ANN [12], as this 
structure provides the ability to conveniently fit nonlinear 
factors in realizing PV power forecasting. Based on the 
principles of PV, the power is mainly generated according to 
the irradiation and surrounding circumstances [13]. 

The forecasting proceeds via a BPNN. The structure of the 
BPNN model is shown in Fig. 3. 

 

Figure 3. BPNN structure diagram for PV forecasting, shows 
the structure, forward propagation and back propagation of 

the neuron network. 

Key factors collected from meteorological stations based at 
the PV plant are fed into the network, victor 𝒙𝟏 in the input 
layer, is consist of input variables 𝑥ଵ

ଵ, 𝑥ଶ
ଵ,∙∙∙ 𝑥଻

ଵ , which are 
Global Horizontal Irradiation (GHI), Diffuse Horizontal 
Irradiation (DHI), Wind Speed (WS), Wind Direction (WD), 
Ambient Temperature (AT), Rain Fall(RF) and UV index (UV) 
[14]. 

After initialize the weights 𝒘𝒊 = ൣ𝑤ଵ
௜ , 𝑤ଶ

௜ ,∙∙∙ 𝑤଻
௜ ൧

𝑻
 and bias 

𝒃𝒊 = [𝑏௜] vector the forward propagation is through the way as 
indicated in equation (1), (2) [15] 

 
𝒂𝒊 = 𝑹𝒆𝒍𝒖(𝒙𝒊) (𝒊 > 𝟏)        (1) 
𝒙𝒊ା𝟏 = 𝒘𝒊𝒂𝒊 + 𝒃𝒊 =             (2) 

 
i indicate the no. of layer, if i=1, 𝒂𝒊 = 𝒙𝒊, Relu function is the 
activation function proposed in the model. 

By using the gradient descent method and back propagation 
algorithm, the proper weights and biases for the minimum point 
of loss can be found through repeated iterations, as shows in 
Fig. 4. 

 

Figure 4. Illustration of the gradient descent method, where 
the loss decreases on each iteration 

To avoid the impact of noisy gradient caused by individual 
and diversity input variables, meanwhile shorten the training 
duration, the Adam optimizer is applied to the neuron network 
and training process [16]. 
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To optimize the hyperparameters within a limited range, the 
Keras tuner is used [17]. The Keras tuner is a library that helps 
to identify the optimal set of hyperparameters for the model 
[18, 19]. With the help of the Keras tuner, the most suitable 
hyperparameter values, such as the number of layers, number 
of neurons in each layer, and learning rate, are efficiently 
selected. The BPNN is then used to train the model using the 
available dataset. 

By using the Keras tuner, suitable ranges of the learning 
rate, number of layers, and number of neurons in each layer can 
be determined [20]. The optimization objectives of the random 
search are to minimize the loss on the training set and 
validation set, and to maximize the Accuracy on the training set 
and validation set. The hyperparameter ranges are summarized 
in Table 1. 

Table 1. Range of hyperparameters 

Hyper Parameter Value 
Learning Rate 1e-2, 1e-3, 1e-4,1e-5 
Number of Layers 2~50 
Neurons of each Layer 3~100, step=5 
Objective of Search Loss, Accuracy,  

Validation_Loss, 
Validation_Accuracy 

B.  DATASET PROCESS 
The dataset was collected from the Alice Springs DKA PV 
plant in Australia [21], and includes key factors such as active 
power, performance ratio, wind speed, temperature, global 
horizontal irradiation (GHI), diffuse horizontal irradiation 
(DHI), wind direction, and rainfall. These data are provided at 
5-min intervals from March 2013 to September 2020. For the 
UV index, the available dataset was obtained from the 
Australian authorities [22], and has a resolution of 1 min. 

Almost 1% of the values in the dataset were found to be 
erroneous, such as negative values of the active power and 
GHI/DHI values far beyond the 50% range [23]. These data 
were defined as noise and removed. By analyzing the 
correlation between active power and other factors, and based 
on the principles of PV, less-correlated factors, such as wind 
speed, wind direction, and rainfall, were also removed. As each 
factor in the dataset had different dimensions, with some values 
being tremendously higher than others, the remaining data were 
normalized to ensure that the gradient descent method would 
be effective [24]. 

The final dataset consisted of almost 590,000 individual 
data points. These were classified into a training set, validation 
set, and test set according to a ratio of 7:2:1. For the test set, the 
data were fixed, whereas cross-validation was applied to the 
data in the training and validation sets [25]. 

C.  PEFORMANCE METRICS 
To evaluate the performance of the model, we use the accuracy, 
mean squared error (MSE), and mean absolute error (MAE) 
metrics. These are defined as follows, where 𝑦పෝ  and 𝑦௜  denote 
the ith forecasted and actual values, respectively, and m is the 
size of the dataset [26, 27] 

𝐴cc𝑢𝑟𝑎𝑐𝑦 = ൬1 − ฬ
∑ (௬ො೔ି௬೔)೘

೔సభ

∑ ௬೔
೘
೔సభ

ฬ൰ × 100% ,             (3) 

𝑀𝑆𝐸 =
ଵ

௠
∑ (𝑦పෝ − 𝑦௜)ଶ௠

௜ୀଵ  ,                       (4) 

𝑀𝐴𝐸 =
ଵ

௠
∑ |𝑦ො௜ − 𝑦௜|௠

௜ୀଵ  .                          (5) 

III. RESULTS AND ANALYSIS 
To verify the performance of the forecasting model, four 
optimization objectives were considered in the training stage: 
loss, Validation_set_loss, Accuracy, and Validation_set 
_Accuracy. To visualize the performance, the first 24 h of 
predicted PV power and real PV power are compared in Figs. 
5–8 for models with and without the UV index.  

Fig. 5–8 show the first 24 h of the test set using loss, 
Accuracy, Validation_set_loss, and Validation_set_Accuracy, 
respectively, as the optimization objective. The deviation 
between the forecast and real PV power with the UV index is 
consistently smaller than that without the UV index. This is 
easily observed in the figures, especially for the peak range of 
power during the daytime. 

 

 

Figure 5. (a) Curve with UV index using loss as the 
optimization objective 

 

 

Figure 5. (b) Curve without UV index using loss as the 
optimization objective 
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Figure 6. (a) Curve with UV index using Accurancy as the 
optimization objective 

 

 

Figure 6. (b) Curve without UV index using Accuracy as the 
optimization objective 

 

  

Figure 7. (a) Curve with UV index using Val_Loss as the 
optimization objective 

 

Figure 7. (b) Curve without UV index using Val_Loss as the 
optimization objective 

 

 

Figure 8. (a) Curve with UV index using Val_Accuracy as the 
optimization objective 

 

 

Figure 8. (b) Curve without UV index using Val_Accuracy as 
the optimization objective 
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Examining the model performance quantitatively, the 
forecasting results significantly improve when the model uses 
the UV index, regardless of whether the accuracy, MSE, or 
MAE metric is considered. As shown in Fig. 9, the 
improvement rates are 4.28–6.78% in terms of accuracy, 
25.82–43.35% in terms of MSE, and 13.46–28.69% in terms of 
MAE (these values were calculated using the whole of the test 
set; details are presented in Table 3). 
 
 

 

Figure 9. (a) Accuracy of PV power forecasting between 
models with and without UV index 

 
 

 

Figure 9. (b) MSE of PV power forecasting between models 
with and without UV index 

 
 

 

Figure 9. (c) MAE of PV power forecasting between models 
with and without UV index 

 

Table 2. Comparison of accuracy, MSE, MAE using loss, 
Accuracy, Val_loss, Val_Accuracy as optimization 

objective 

Optimizing 
Objective Loss ACC Val_Loss Val_ACC 

ACC 
w/o UV 85.19% 83.64% 84.07% 84.59% 
w/ UV 90.97% 87.90% 87.67% 89.06% 

Imp Rate 6.78% 5.09% 4.28% 5.28% 

MSE 
w/o UV 0.09689 0.10473 0.10487 0.10082 
w/ UV 0.05489 0.07550 0.07779 0.06194 

Imp Rate 43.35% 27.91% 25.82% 38.56% 

MAE 
w/o UV 0.18652 0.19065 0.19166 0.18328 
w/ UV 0.133 0.15762 0.16588 0.13962 

Imp Rate 28.69% 17.32% 13.46% 23.82% 

where   Acc– Accuracy, Imp – Improvement, w/ – with, w/o – 
without. 
 

Table 3. Comparison of computation time using loss, 
Accuracy, Val_loss, Val_Accuracy as optimization 

objective 

Optimizing Objective Loss ACC Val_Loss Val_ACC 
Average 
Computation 
Time 
/second 

w/o UV 2159.3 2475.5 2232.2 2597.1 

w/ UV 2596.2 2977.6 2459.8 2844.3 

where  w/ – with, w/o – without. 
 

From Figs. 5–8, it is clear that the forecast output power 
matches the real output power very well. Moreover, by 
integrating the UV index into the model, the forecasting 
performance is obviously improved. The forecasting results for 
the whole test set are verified in terms of accuracy, MSE, and 
MAE in Fig. 9 and Table 2. The forecasting performance is 
significantly enhanced when the UV index is included in the 
model. Meanwhile, the computation cost have been evaluated 
by the average computation time as indicated in Table 3, due to 
involve much more data, the computation time of with UV 
index is a littlbe bit higher than without UV index. 

IV. CONCLUSIONS 
In this paper, we have presented a new method for 

forecasting the PV output power by introducing the UV index 
into the model. This allows the decay of parts during long-term 
operation to be considered, while enhancing the weight of 10–
400 nm solar irradiation.  

After filtering meaningless values from the dataset and 
removing factors with weak correlation, we applied the Keras 
tuner to identify the optimal parameters, which is more reliable 
than the conventional method of manual parameter tuning. 
Analysis and evaluation of the forecasting results in terms of 
accuracy, MSE, and MAE clearly indicate that our proposed 
method significantly improves the accuracy of PV power 
forecasting. 

Compare to the existing model, such as times series model, 
regression model and etc., which the accuracy range is about 
74%-87.8%, our proposed method have much promotion on 
forecast accuracy which is 83.64%-90.97%. 

The limitation of this study is that our proposed method 
does not distinguish forecast in different weather. The future 
work will focus on promote the forecast accuracy by 
distinguishing different weather, furthermore, will investigate 
on that integrating time series as the auxiliary method in terms 
of weather gradient changes to promote forecast accuracy. 
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