

318 VOLUME 21(3), 2022

Date of publication SEP-30, 2022, date of current version JUN-03, 2022.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.21.3.2687

Traffic-aware Routing with Software-
defined Networks Using Reinforcement

Learning and Fuzzy Logic
SHOHREH JAAFARI, MOHAMMAD NASSIRI, REZA MOHAMMADI

Computer Engineering Department, Bu-Ali Sina University, Iran
(e-mail: sh.jafari.en@gmail.com, m.nassiri@basu.ac.ir, r.mohammadi@basu.ac.ir

Corresponding author: Reza Mohammadi (e-mail: r.mohammadi@basu.ac.ir).

 ABSTRACT In recent years, the idea of software-defined networks (SDNs) has been proposed for better network
management. This architecture has succeeded in optimizing network management functions and increased the ability
to synchronize network equipment. Currently, one of the major issues in this architecture is the routing of packets
flowing in the network. The main aim in the routing of packets is to increase the quality of services. Enhancement of
the quality and productivity of these networks will increase user satisfaction. To this end, the present study proposes a
mechanism for selecting the best route from among several existing routes to direct a flow on such a network. The
proposed method examines the network parameters including bandwidth, delay, and packet loss on each link of the
route by using artificial intelligence algorithms and changes the parameters reducing network productivity by means of
fuzzy logic. Our evaluations show that the proposed method can select routes with high productivity and increase the
quality of services on the network. Receiving feedback and modifying the fuzzy membership functions related to each
mentioned criterion can maintain the effect of these parameters on an acceptable level after which all transmissions
tend towards the optimum. Given the use of reinforcement learning methods which underpin some of the routing
methods in SDNs, the proposed idea may gradually contribute to the provision of optimized services on the network.

 KEYWORDS software-defined network; reinforcement learning; optimization of routing; delay; packet loss;
bandwidth.

I. INTRODUCTION
 computer network consists of many pieces of equipment
including routers, switches, and firewalls, each

functioning according to highly complicated protocols. In
traditional networks, each one of the devices that act on
different network layers may have been purchased from a
different company, and the variety of their rules and structures
can complicate network management actions [1]. For this
reason, it is difficult to implement management policies in
traditional networks and novel management ideas cannot be
easily applied in a consistent and homogeneous manner,
thereby necessitating the development of new types of
networks to overcome these problems.

Software-defined Network (SDN) is an idea which was
introduced to facilitate network management. This architecture
makes it easier to manage the entire network and optimizes the
programming of rules [2]. SDN involves a new architecture in
which the control unit is separated from the data unit. The
control unit pushes the rules required for the transmission of
the existing flows into one or more flow tables in each switch

and updates the tables if necessary [3]. In this architecture,
OpenFlow communication protocol is used for connecting the
data and control units. This protocol allows the controller to
send the instructions to switches [4]. As the controller is
responsible for management in SDN architecture, one of its
tasks is routing. With increase in the number of users and traffic
of networks as well as the ever-changing network topology, the
SDN controller should be able to transfer the packets to the
intended destination in the shortest time possible. Since the
advent of SDN, researchers have been attempting to investigate
this issue. Traffic engineering is a solution that has attracted the
attention of many researchers. Given the importance of routing
in the networks, various ideas and algorithms have so far been
proposed. Following is a brief review of the work conducted in
this field. Initial research introduced SDN and the tasks of the
different parts of such networks. Feamster et al. refer to these
networks as a new architecture where a central management
unit called controller sends information to the data unit with the
aim of improving network performance and decision-making
concerning the quality of services (QoS) or security [5]. In

A

Shohreh Jaafari et al. / International Journal of Computing, 21(3) 2022, 318-324

VOLUME 21(3), 2022 319

addition to explaining SDNs, Nunes et al. indicate that SDN
dramatically facilitates network management and increases
novelty through programming [6].

Moreover, a lot of research was conducted on large scale
SDNs. For instance, Lin et al. proposed a comparative
conscious routing in hierarchical multi-layer SDNs. Their
architecture includes three controller levels, i.e., super, domain,
and slave controllers. The slave controllers are responsible for
collecting information for the domain controller. They can also
run some of the control functions such as traffic reception
control and flow control. The super controller that is connected
to the domain controllers has full access to the switches and
regulates the entire network performance. Furthermore, the
slave controllers do not need extensive information from the
network, which results in reducing the signal overload sent to
the domain controllers [7]. One of the main functions of the
SDN controller is to find the optimal route and therefore
contribute to the enhancement of QoS during the transmission
of packets [8]. To achieve the desirable performance, some
researchers attempted to make use of artificial intelligence (AI)
in SDN. Guo et al. devised a smart control mechanism for
traffic optimization based on SDN and AI. Their findings
suggest that using SDN and AI allows for a smarter traffic
optimization. By incorporating AI technology, the SDN
controller can provide a more flexible, precise, and dynamic
method of traffic scheduling and map various flows onto more
suitable routes according to traffic features, thus optimizing the
use of network resources [9]. In fact, AI helps to increase the
level of services and decrease delays in SDNs. Stampa et al.
showed that, when AI is added to the network, the SDN
controller can act automatically and present routing
configurations, which reduces delays in the network. In their
study, the controller is compatible with the traffic on the
network and makes use of three signals, i.e., state, action, and
reward. State denotes the bandwidth in each source and
destination node pair; action refers to the weight of links; and
reward is the average delay in the network. This method utilizes
traffic matrix and random exploration technique to prevent a
local minimum. It reduces network delay by means of one-step
optimization [10]. As their results indicate, training the agent
in this study was time-consuming. This is why we shall now
review a study by Sendra which has reduced the time for
training the agent.

Sendra et al. proposed a method of distribute routing on
SDNs. They added the reinforcement learning algorithm using
the Quagga set [11] to the OSPF routing protocol. This
algorithm allows for changing the routing algorithms in the
controller. The proposed routing algorithm was tested and
compared with a traditional OSPF routing protocol based on an
SDN topology. Using reinforcement learning in calculating the
cost of routes and selecting optimal routes could decrease delay
and jitter in these networks [12]. In fact, by smartly avoiding
routes with excessive loss, a higher QoS was obtained. What
was important in this study is the setting of the weights of the
used parameters including available bandwidth (BW), delay,
and packet loss. In fact, the weight of each parameter was set
manually so that increase in any criterion would negatively
affect the computation of the costs of links and all the criteria
were not involved in the computation of the costs in equal
proportions. For this reason, the selected routes did not
maintain an acceptable level of productivity.

Given the problems discussed above concerning the
optimization of routing in SDNs, we decided to develop a

method for setting the coefficients of network parameters by
using fuzzy membership functions. In the present study, after
generating some traffic, we measure available BW, delay, and
loss on the network and calculate the shortest route between a
certain source and destination by means of routing algorithms.
The route is selected with the aim of increasing network
productivity. In this architecture, reinforcement learning
enables the controller as an agent in the network to begin
learning in order to find optimal routes.

The paper is organized as following. The second section
discusses the fundamental concepts as well as the proposed
architecture. It also explains how AI could be added to the
intended scenario. Section 3 evaluates the method and
compares it with other methods before concluding the
discussion.

II. BACKGROUND CONCEPTS

A. REINFORCEMENT LEARNING
One of the fundamental concepts in the traffic engineering of
SDNs is the optimization of routing as well as the finding of
optimal routes on the network. In fact, finding a proper route
between a source and a destination is perhaps among the central
aims of traffic engineering [13]. Traffic engineering attempts
to improve network management by identifying the different
types of traffic in the network [14]. AI can greatly contribute to
the optimization of routing in SDNs with the aim of
accomplishing productivity. Today, use of AI algorithms in
such architectures has resulted in a number of innovative
solutions to the problem of routing. One of the AI techniques
is reinforcement learning (RL) methods. Reinforcement
learning includes three indicators, i.e., the agent, the state
space, and the action space. The agent is an entity which begins
learning through interaction with the environment and tries to
maximize long-term reward by opting for the best action [15].
The long-term reward depends on the current reward of the
selected action along with its future rewards. In this model, the
agent is interacting with an ever-changing environment and
attempts to fulfill the final goal as well as appropriate learning
[15]. After an action, the agent receives either reward or
penalty. When different actions have been done and the
environment has been changed, the agent once again begins to
learn and perform further actions. This cycle continues until the
agent has achieved its final goal [16]. Fig. 1 illustrates the
systemic model of reinforcement learning. In this model, the
evaluation signals which are sent to the learning system may
result in reinforcement or punishment. The interpreter that
provides the learning agent with this information is at a higher
level than the system. The training signals may be incomplete
and affected by noise. Therefore, as the environment and the
set of permitted actions are constantly changing, the learning
agent must achieve its aim which is to maximize the rewards
received during the learning time [17].

Figure 1. The systemic model of reinforcement learning

 Shohreh Jaafari et al. / International Journal of Computing, 21(3) 2022, 318-324

320 VOLUME 21(3), 2022

It should be noted that sometimes the agent may avoid small
future rewards to receive bigger rewards in a more distant
future [18]. Reinforcement learning is used to increase
productivity in traffic engineering and packet routing in SDNs
[19]. When reinforcement learning is embedded in an SDN, the
controller is the agent and the network acts as the environment.
Through reinforcement learning algorithms in an SDN we
should select smarter routes with lower costs between the
nodes. After receiving the feedback and inspecting the reward
of actions, the learning agent sets the effect of distinct
parameters on each route. Available delay, BW, and loss are
among these parameters. There are numerous methods for
calculating the effect of each of these parameters when
computing the route cost. One such method is fuzzy logic.

B. Fuzzy Logic
Fuzzy logic is a many-valued logic in which truth values may
be any real number in the range from 0 to 1, inclusive of 0 and
1. The term ‘fuzzy’ means inexact and ambiguous. Fuzzy logic
has come to be used as a way of representing data that are not
exact enough [20]. It is a kind of mathematical theory used for
modeling and controlling indeterminacy problems [21]. Today,
fuzzy logic helps with a wide range of decision-making
problems and often produces the best decisions based on the
input values. This logic is based on the human process of
decision-making [22]. Fuzzy logic architecture, which is
depicted in Fig. 2, consists of four components: fuzzifier
module, fuzzy rule base, inference engine, and defuzzifier
module. In a fuzzy process, a set of input data is collected and
converted to a fuzzy set using fuzzy language variables, fuzzy
language expressions, and membership functions. After
fuzzification, an inference is made based on a set of rules.
Finally, the defuzzifier module illustrates the fuzzy output as a
clear output by using membership functions [23].

Figure 1. Fuzzy logic architecture

III. THE PROPOSED METHOD
The problem with traditional networks is that the routes
selected for packet transmission could not maintain acceptable
levels of network parameters including available BW, delay,
and packet loss. In addition, the criteria collected from the
network do not bear equal effects on the weight of links, which
may increase delay and loss in the network and reduce its
productivity. For this reason, in the present study, routing is
done based on QoS and the routes with high levels of
productivity are selected.

Fig. 3 illustrates the proposed method for creating a route
between a source and a destination. First, the intended topology
is defined on an SDN and then the reinforcement learning
algorithm and the fuzzy logic function are implemented on the
controller. Traffic is produced and exchanged among the
network nodes using different methods of traffic generation.

First, all the switches on the network collect information about
available delay, BW, and packet loss for every link and send it
to the controller. Next, the controller receives these three
parameters and passes them through to the fuzzy logic function.
The fuzzy logic function calculates the fuzzy value of each link.
To do this, we use three triangle fuzzy membership function
with three different values Min, Medium and Max. The values
which we have considered for these functions are 0, Max/2 and
Max. In fact, Max is the maximum value of each measure.
Afterwards, using the routing algorithms, the shortest route
between a source and a destination is determined by means of
the fuzzy value of each of the links. When routing is finished,
the determined route is set up between the nodes and the
generated traffic is transmitted through it. Several seconds after
the execution of the scenario, the controller elicits feedback
through the network switches and inspects the status of the
network links in terms of available BW, delay, and loss. If the
values of the mentioned parameters on each link of the network
routes exceeds the specified thresholds, the route in question
will receive a penalty; otherwise, it will be rewarded. In the
end, the controller sets the parameters of the link of each route
by use of fuzzy logic and repeats the routing process.

Figure 2. The algorithm for computing the route using
reinforcement learning and fuzzy logic

Algorithm 1 shows the method used in this study. To
perform this experiment, first the network switches collect the
information about available BW, delay, and packet loss from
the entire network links and pass it over to the SDN controller
(line 1). Next, the controller calculates the three parameters for
each link and gives the values to the fuzzy logic function. The
function has three inputs and one output. The fuzzy function
gets the three inputs and calculates the fuzzy number of each
link using a defuzzifier function. In the end, we will have a
fuzzy number for each link in the topology (lines from 2 to 4).
Subsequently, using the Dijkstra algorithm, the shortest route
between a source and destination is calculated based on the
fuzzy numbers. In fact, the Dijkstra algorithm begins the
routing process based on the fuzzy numbers obtained in the
previous step. After calculating the shortest route between two
hosts, the route is set up and video traffic is exchanged between
the hosts (line 5 and 6).

10 seconds after the execution of the program, the controller
receives reports from the network switches and examines the
values of the parameters at each link on the route (line 7). It
should be mentioned that each of the parameters has a threshold
values which must not be exceeded during the execution of the
algorithm. For example, in this study, the threshold value is 80
bps for available BW, 200 ms for delay, and 5% for packet loss.
If the value of any of the parameters has not exceeded the
defined threshold, the route will be rewarded; otherwise, the
route receives a penalty (lines 8 to 13). In the end, the fuzzy
membership functions are refreshed based on the reward or
penalty of the previous step (line 14). This cycle will continue
until better routes are selected for transmission of traffic over
the network. One of the main achievements of this policy is that

Shohreh Jaafari et al. / International Journal of Computing, 21(3) 2022, 318-324

VOLUME 21(3), 2022 321

choosing best route for traffic flows leads to less congestion.
This is because of forwarding traffics to the links with more
available bandwidth which reduces the probability of
congestion.

Algorithm 1. RLTE

1 M ← collect D and L and BW from links
2 for src < Number of nodes do
3 for des < Number of nodes do

4 F[src][des] ← Fuzzy(𝑀𝐷[src][des], 𝑀𝐿 [src][des],𝑀𝐵𝑊

[src][des],𝑃𝑑[src][des], 𝑃𝑙[src][des],𝑃𝐵𝑊[src][des])

5 a ← dijkstra(F [src] [des], src, des)
6 If (a.findpath) then The path is installed end
7 M ← collect D and L and BW from links

8 If (𝑀𝐷 >= TH-Delay) then F-D[s][d] ← true end

9 If (𝑀𝐿 >= TH-Loss) then F-L[s][d] ← true end

10 If (𝑀𝐵𝑊 >= TH-BW) then F-BW[s][d] ← true end

11 If (F-D [s] [d] == true || F-L [s] [d] == true || F-BW [s] [d] ==
true) then Calculate Penalty for the link

12 else Calculate Rewards for the link
13 end

14 Update(𝑃𝐷[src][des], 𝑃𝐿[src][des], 𝑃BW [src][des])

15 end
16 end

IV. PERFORMANCE EVALUATION
To design the scenario, we considered a system consisting of a
number of switches and hosts. Fig. 4 shows the topology used
in this study. Traffic was produced and exchanged among
several selected node pairs using different methods of traffic
generation. These flows were used to increase the load of
network traffic. The hosts connected to s1 and s23 nodes were
the intended source and destination, and video traffic was
exchanged between these two hosts. The flow between these
two nodes is the flow which is investigated in this study. The
aim is to find an optimal path and increase productivity in
transmission of traffic between the two hosts. In this paper, a
single-path method has been used, i.e., the traffic is transmitted
between the source and destination only through a single route.

Figure 4. The topology of Sprint GIP network in North
America [24]

To avoid using expensive hardware, we constructed our
scenario by means of Mininet emulator. Mininet was developed
by Kaur et al. [25] as a tool for designing virtual SDNs so as to
avoid the use of expensive specialized hardware equipment
having tested the performance of Mininet during the

transmission of multimedia traffic over an SDN. Jimenez et al.
concluded that it was a powerful tool that could be used for
experiments on SDNs [25]. This was optimized by Jimenez et
al. in [26]. They extended the range of experiments and
confirmed that Mininet is a reliable SDN emulator.

The scenario was implemented in Mininet and the fuzzy
logic and reinforcement learning were executed in the
controller. In each execution, video traffic loads of 5, 7, 10, 13,
and 15 Mbps were exchanged between h1 and h23 nodes as the
intended source and destination. The simulation ran for 300 s
and the results were recorded. In the presentation of our results,
Sendra refers to the older method in which the coefficients of
the parameters were set manually. In the proposed solution,
fuzzy logic has been added to this model and the parameters
are updated using fuzzy membership functions. The proposed
method is called RLTE (Reinforcement Learning Traffic
Engineering for SDN). In this study, we shall compare RLTE
with Sendra and OSPF. We evaluate the performance of the
three methods in terms of some important QoS metrics as
follows:

 Packet loss ratio: It is the fraction of received packets
by the target to the total sent packets by the senders.

 End-to-end delay: It is the time between sending a
packet in the source and receiving it at the destination.

 Received throughput: It is the volume of received
traffic by the target nodes during a second and
expresses by Bps (Bit per Second).

In the end, to examine the average of the obtained results in
RLTE and Sendra, we executed each method 10 times with
different traffic intensities and recorded the results.

Fig. 5 shows the end-to-end delay in the three methods. The
horizontal axis represents the traffic transmitted between the
source and destination, and the vertical axis represents the
delay in milliseconds. Each of the numbers shown in the graph
is the average of the results of multiple executions. As can be
seen, the traditional OSPF method has more delay than the
other methods. This might be explained by the fact that routes
in OSPF are selected using the Dijkstra algorithm and the
existing network parameters do not affect this selection;
therefore, the parameters are not examined for this purpose.
According to the results, the delay in RLTE is less than in
Sendra. To clarify this point, Figure 6 compares the delay
values of the two methods.

Figure 5. Comparison of the end-to-end delay in the three

methods

As shown in Fig. 6, the delay values of both methods are
relatively close to each other but the delay of RLTE is slightly

 Shohreh Jaafari et al. / International Journal of Computing, 21(3) 2022, 318-324

322 VOLUME 21(3), 2022

less than that of Sendra in all the traffic intensities transmitted
over the network. In RLTE, the network parameters are set
according to the fuzzy numbers; that is, route selection is
influenced by all the parameters together, not by a single
parameter having a low or high value. For this reason, packets
are transmitted with less delay.

Figure 6. Comparison of the end-to-end delay between RLTE
and Sendra

For a closer inspection of the delay in different times in the

three methods, the end-to-end delay was specifically analyzed
for the traffic of 7 Mbps. The results are illustrated in Fig. 7.
As can be observed, the delay of OSPF protocol is about 60 ms,
which has remarkably increased towards the end of the
simulation. As the parameters are not involved in calculating
the route in Sendra, this method shows more delay than RLTE.
Due to using reinforcement learning and fuzzy logic, RLTE had
less delay during the simulation.

Figure 7. Comparison of the end-to-end delay for the traffic of
7 Mbps in the three methods

To examine the average of results as well as the minimum

and maximum of each scenario, each method was executed 10
times and the recorded results are presented below. Fig. 8
shows the average delay in RLTE and Sendra. Due to the
involvement of network parameters in RLTE, the delay values
in this method had smaller standard deviation values than in
Sendra, and the overall delay of RLTE in larger traffic
intensities was less than that of Sendra. Also, the larger the
traffic load on the network, the closer the RLTE results were to
the average result. As the traditional OSPF method has very
long delays (around 2000 ms) in some traffic intensities, it is
not illustrated in the graph of the results.

Figure 8. Comparison of the average delay between RLTE
and Sendra

Fig. 9 shows the packet loss in the three methods. The
horizontal axis represents the traffic transmitted between the
source and destination, and the vertical axis represents the loss
in percentage. As mentioned earlier, the OSPF protocol does
not take into account the network parameters in route selection
and therefore increases packet loss. As shown in Fig. 9, loss in
OSPF is as high as 0.4. However, it is much less in RLTE and
Sendra. Fig. 10 shows the value of loss for the two methods.

Figure 9. Comparison of packet loss in the three methods

Fig. 10 shows the average loss in RLTE and Sendra.
According to the results presented in Fig. 10, the higher the
transmitted traffic, the less the packets lost in RLTE; however,
loss grows at an increasing rate in Sendra. The reason is that,
in each execution of the routing protocol in RLTE, loss is
considered as a factor in computing the route and set via fuzzy
membership functions in relation to the other parameters. In
Sendra, however, the coefficient of loss is set manually and is
not adjusted to the conditions of network links.

Figure 10. Comparison of the packet loss between RLTE and
Sendra

Fig. 11 shows the packet loss in 10 executions of the three
methods. As shown in previous parts, the average loss for all

Shohreh Jaafari et al. / International Journal of Computing, 21(3) 2022, 318-324

VOLUME 21(3), 2022 323

traffic intensities in OSPF is greater than in the other two
methods. As the network parameters in RLTE are set
dynamically according to the conditions of the network, the
loss in RLTE is expected to be less than in Sendra. As Fig. 11
shows, the average loss in RLTE has even been recorded as
zero for some of the traffic loads. Also, the higher the traffic
intensity on the network, the better the performance of RLTE
in comparison with Sendra. Thus, it can be inferred that the
proposed method has sought to minimize loss and provide
appropriate conditions for packet transmission.

Figure 11. Average packet loss in the three methods

Fig. 12 compares the jitter values in RLTE and Sendra. It
can be observed that, as the traffic rate increases on the
network, RLTE has less jitter than Sendra. In RLTE, after
computing the route, packets arrive at the destination from
more optimal routes and in shorter intervals.

Figure 12. Comparison of the jitter between RLTE and Sendra

Figure 13. Comparison of the received throughput in the three

methods

V. CONCLUSIONS
In this study we proposed a smart routing method for SDNs.
For this purpose, we analyzed the construction method of SDN
topology which runs the routing protocol in a distributed
manner. To improve routing, we implemented a smart
algorithm based on reinforcement learning in the controller.
The network parameters were involved in the routing process
by means of fuzzy logic. The proposed routing algorithm was
tested and compared with an older method and a traditional
OSPF routing protocol based on an SDN topology. The results
show that the proposed routing method works well and obtains
better QoS features than the traditional method. In addition, the
obtained jitter value is better than the values offered by
traditional routing and the Sendra method. Thus, better quality
and QoS values become possible by smartly avoiding routes
with high loss values. In general, the Sendra method could
optimize the traditional OSPF protocol and lead to better
results. We added fuzzy logic to the proposed method. The
obtained results under saturated conditions show that as
network traffic becomes heavier, RLTE performs better than
the other two methods and optimizes the functionality of
routing protocols.

References
[1] H.-N. Quach, S. Yoem, and K. Kim, “Survey on reinforcement learning

based efficient routing in SDN,” Proceedings of the The 9th International
Conference on Smart Media and Applications SMA’2020, September
2020, pp. 196–200. https://doi.org/10.1145/3426020.3426072.

[2] M. Vafaei, A. Khademzadeh, and M. A. Pourmina, “A new QoS adaptive
multi-path routing for video streaming in urban VANETs integrating ant
colony optimization algorithm and fuzzy logic,” Wireless Personal
Communications, vol. 118, pp. 2539-2572, 2021.
https://doi.org/10.1007/s11277-021-08142-7.

[3] Q. Fu, E. Sun, K. Meng, M. Li, and Y. Zhang, “Deep Q-learning for
routing schemes in SDN-based data center networks,” IEEE Access, vol.
8, pp. 103491-103499, 2020.
https://doi.org/10.1109/ACCESS.2020.2995511.

[4] S. Torkzadeh, H. Soltanizadeh, and A. A. Orouji, “Energy-aware routing
considering load balancing for SDN: a minimum graph-based ant colony
optimization,” Cluster Computing, vol. 24, issue 3, pp. 2293-2312, 2021.
https://doi.org/10.1007/s10586-021-03263-x.

[5] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intellectual
history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87-98, 2014.
https://doi.org/10.1145/2602204.2602219.

[6] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T.
Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014.
https://doi.org/10.1109/SURV.2014.012214.00180.

[7] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “QoS-aware adaptive
routing in multi-layer hierarchical software defined networks: A
reinforcement learning approach,” Proceedings of the 2016 IEEE
International Conference on Services Computing (SCC), 2016, pp. 25-33.
https://doi.org/10.1109/SCC.2016.12.

[8] I. F. Akyildiz, P. Wang, and S.-C. Lin, “SoftAir: A software defined
networking architecture for 5G wireless systems,” Computer Networks,
vol. 85, pp. 1-18, 2015. https://doi.org/10.1016/j.comnet.2015.05.007.

[9] A. Guo and C. Yuan, “Network intelligent control and traffic
optimization based on SDN and artificial intelligence,” Electronics, vol.
10, no. 6, article 700, 2021. https://doi.org/10.3390/electronics10060700.

[10] G. Stampa, M. Arias, D. Sánchez-Charles, V. Muntés-Mulero, and A.
Cabellos, “A deep-reinforcement learning approach for software-defined
networking routing optimization,” arXiv preprint arXiv:1709.07080,
2017.

[11] P. Jakma and D. Lamparter, “Introduction to the quagga routing suite,”
IEEE Network, vol. 28, no. 2, pp. 42-48, 2014.
https://doi.org/10.1109/MNET.2014.6786612.

[12] S. Sendra, A. Rego, J. Lloret, J. M. Jimenez, and O. Romero, “Including
artificial intelligence in a routing protocol using software defined
networks,” Proceedings of the 2017 IEEE International Conference on

 Shohreh Jaafari et al. / International Journal of Computing, 21(3) 2022, 318-324

324 VOLUME 21(3), 2022

Communications Workshops (ICC Workshops), 2017, pp. 670-674.
https://doi.org/10.1109/ICCW.2017.7962735.

[13] H. Yang et al., “Time-aware software defined networking for OpenFlow-
based datacenter optical networks,” Netw. Protoc. Algorithms, vol. 6, no.
4, pp. 77-91, 2014. https://doi.org/10.5296/npa.v6i4.5922.

[14] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 1, pp. 36-56, 2008.
https://doi.org/10.1109/COMST.2008.4483669.

[15] M. K. Awad, M. H. H. Ahmed, A. F. Almutairi, and I. Ahmad, “Machine
learning-based multipath routing for software defined networks,” Journal
of Network and Systems Management, vol. 29, no. 2, pp. 1-30, 2021.
https://doi.org/10.1007/s10922-020-09583-4.

[16] J. Xie et al., “A survey of machine learning techniques applied to software
defined networking (SDN): Research issues and challenges,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 393-430, 2018.
https://doi.org/10.1109/COMST.2018.2866942.

[17] L. El-Garoui, S. Pierre, and S. Chamberland, “A new SDN-based routing
protocol for improving delay in smart city environments,” Smart Cities,
vol. 3, no. 3, pp. 1004-1021, 2020.
https://doi.org/10.3390/smartcities3030050.

[18] S. Peng-hao, L. Ju-long, S. Juan, and H. Yu-xiang, “An intelligent routing
technology based on deep reinforcement learning,” Acta Electonica
Sinica, vol. 48, no. 11, p. 2170, 2020.

[19] H. A. Al-Rawi, M. A. Ng, and K.-L. A. Yau, “Application of
reinforcement learning to routing in distributed wireless networks: a
review,” Artificial Intelligence Review, vol. 43, no. 3, pp. 381-416, 2015.
https://doi.org/10.1007/s10462-012-9383-6.

[20] T. J. Ross, Fuzzy Logic with Engineering Applications, John Wiley &
Sons, 2005.

[21] H. El Alami and A. Najid, “SEFP: A new routing approach using fuzzy
logic for clustered heterogeneous wireless sensor networks,”
International Journal on Smart Sensing & Intelligent Systems, vol. 8, no.
4, pp. 2286-2306, 2015. https://doi.org/10.21307/ijssis-2017-854.

[22] L. Zhao, Z. Bi, M. Lin, A. Hawbani, J. Shi, and Y. Guan, “An intelligent
fuzzy-based routing scheme for software-defined vehicular networks,”
Computer Networks, vol. 187, p. 107837, 2021.
https://doi.org/10.1016/j.comnet.2021.107837.

[23] R. Mohammadi, R. Javidan, and A. Jalili, “Fuzzy depth based routing
protocol for underwater acoustic wireless sensor networks,” Journal of
Telecommunication, Electronic and Computer Engineering (JTEC), vol.
7, no. 1, pp. 81-86, 2015.

[24] S.-C. Lin, P. Wang, and M. Luo, “Jointly optimized QoS-aware
virtualization and routing in software defined networks,” Computer
Networks, vol. 96, pp. 69-78, 2016.
https://doi.org/10.1016/j.comnet.2015.08.003.

[25] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” Proceedings of the International
Conference on Communication, Computing & Systems (ICCCS), 2014,
pp. 139-42.

[26] J. M. Jimenez, O. Romero, A. Rego, A. Dilendra, and J. Lloret,
“Performance study of a software defined network emulator,”

Proceedings of the Twelfth Advanced International Conference on
Telecommunications (AICT 2016), 2016, pp. 17-22.

SHOHREH JAAFARI received her BSc
degree in Computer Software
Engineering from Hamedan University
of Technology. She received his MSc
degree in Computer Software
Engineering from Bu-Ali Sina
University, Hamedan, in 2020. She is
currently working toward a research
assistant at the Department of
Computer Engineering in Bu-Ali Sina
University, Hamedan. Her research

interests include SDN, the Internet of Things and IoT-fog net-
works.

MOHAMMAD NASSIRI is currently an
Associate Professor at Bu-Ali Sina
University. After having graduated
from Sharif University of Technology
(Iran), he obtained his Ph.D. in
computer science from Grenoble INP
(France) in 2008. He was a visiting
researcher at the Universite Grenoble
Alpes (France) during summer 2019.
His research interests mainly concern
improving the performance of various

wireless technologies, namely wireless LANs, wireless sensor
networks, underwater networks, and interconnecting
technologies for the Internet of Things.

REZA MOHAMMADI is an Assistant
Professor in Computer Engineering at
Bu-Ali Sina University since 2018. He
received his MSc and Ph.D. degrees in
Computer Networking from Shiraz
University of Technology in 2013 and
2017, respectively. His PhD thesis was
concerned with traffic engineering in
Software Defined Networks (SDN). He
has several publications in inter-
national conferences and journals re-

garding Underwater Wireless Sensor Networks (UWSNs) and
Software Defined Networks (SDNs). His major fields of interest
are SDN, heuristic algorithms, SDN security, Underwater
Wireless Sensor Networks, Ad hoc Networks, Underground
Wireless Sensor Networks, Internet of Things (IoT) and IoUT.

