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 ABSTRACT In recent years, the idea of software-defined networks (SDNs) has been proposed for better network 
management. This architecture has succeeded in optimizing network management functions and increased the ability 
to synchronize network equipment. Currently, one of the major issues in this architecture is the routing of packets 
flowing in the network. The main aim in the routing of packets is to increase the quality of services. Enhancement of 
the quality and productivity of these networks will increase user satisfaction. To this end, the present study proposes a 
mechanism for selecting the best route from among several existing routes to direct a flow on such a network. The 
proposed method examines the network parameters including bandwidth, delay, and packet loss on each link of the 
route by using artificial intelligence algorithms and changes the parameters reducing network productivity by means of 
fuzzy logic. Our evaluations show that the proposed method can select routes with high productivity and increase the 
quality of services on the network. Receiving feedback and modifying the fuzzy membership functions related to each 
mentioned criterion can maintain the effect of these parameters on an acceptable level after which all transmissions 
tend towards the optimum. Given the use of reinforcement learning methods which underpin some of the routing 
methods in SDNs, the proposed idea may gradually contribute to the provision of optimized services on the network. 
 

 KEYWORDS software-defined network; reinforcement learning; optimization of routing; delay; packet loss; 
bandwidth. 
 

I. INTRODUCTION 
 computer network consists of many pieces of equipment 
including routers, switches, and firewalls, each 

functioning according to highly complicated protocols. In 
traditional networks, each one of the devices that act on 
different network layers may have been purchased from a 
different company, and the variety of their rules and structures 
can complicate network management actions [1]. For this 
reason, it is difficult to implement management policies in 
traditional networks and novel management ideas cannot be 
easily applied in a consistent and homogeneous manner, 
thereby necessitating the development of new types of 
networks to overcome these problems.  

Software-defined Network (SDN) is an idea which was 
introduced to facilitate network management. This architecture 
makes it easier to manage the entire network and optimizes the 
programming of rules [2]. SDN involves a new architecture in 
which the control unit is separated from the data unit. The 
control unit pushes the rules required for the transmission of 
the existing flows into one or more flow tables in each switch 

and updates the tables if necessary [3]. In this architecture, 
OpenFlow communication protocol is used for connecting the 
data and control units. This protocol allows the controller to 
send the instructions to switches [4]. As the controller is 
responsible for management in SDN architecture, one of its 
tasks is routing. With increase in the number of users and traffic 
of networks as well as the ever-changing network topology, the 
SDN controller should be able to transfer the packets to the 
intended destination in the shortest time possible. Since the 
advent of SDN, researchers have been attempting to investigate 
this issue. Traffic engineering is a solution that has attracted the 
attention of many researchers. Given the importance of routing 
in the networks, various ideas and algorithms have so far been 
proposed. Following is a brief review of the work conducted in 
this field. Initial research introduced SDN and the tasks of the 
different parts of such networks. Feamster et al. refer to these 
networks as a new architecture where a central management 
unit called controller sends information to the data unit with the 
aim of improving network performance and decision-making 
concerning the quality of services (QoS) or security [5]. In 
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addition to explaining SDNs, Nunes et al. indicate that SDN 
dramatically facilitates network management and increases 
novelty through programming [6]. 

Moreover, a lot of research was conducted on large scale 
SDNs. For instance, Lin et al. proposed a comparative 
conscious routing in hierarchical multi-layer SDNs. Their 
architecture includes three controller levels, i.e., super, domain, 
and slave controllers. The slave controllers are responsible for 
collecting information for the domain controller. They can also 
run some of the control functions such as traffic reception 
control and flow control. The super controller that is connected 
to the domain controllers has full access to the switches and 
regulates the entire network performance. Furthermore, the 
slave controllers do not need extensive information from the 
network, which results in reducing the signal overload sent to 
the domain controllers [7]. One of the main functions of the 
SDN controller is to find the optimal route and therefore 
contribute to the enhancement of QoS during the transmission 
of packets [8]. To achieve the desirable performance, some 
researchers attempted to make use of artificial intelligence (AI) 
in SDN. Guo et al. devised a smart control mechanism for 
traffic optimization based on SDN and AI. Their findings 
suggest that using SDN and AI allows for a smarter traffic 
optimization. By incorporating AI technology, the SDN 
controller can provide a more flexible, precise, and dynamic 
method of traffic scheduling and map various flows onto more 
suitable routes according to traffic features, thus optimizing the 
use of network resources [9]. In fact, AI helps to increase the 
level of services and decrease delays in SDNs. Stampa et al. 
showed that, when AI is added to the network, the SDN 
controller can act automatically and present routing 
configurations, which reduces delays in the network. In their 
study, the controller is compatible with the traffic on the 
network and makes use of three signals, i.e., state, action, and 
reward. State denotes the bandwidth in each source and 
destination node pair; action refers to the weight of links; and 
reward is the average delay in the network. This method utilizes 
traffic matrix and random exploration technique to prevent a 
local minimum. It reduces network delay by means of one-step 
optimization [10]. As their results indicate, training the agent 
in this study was time-consuming. This is why we shall now 
review a study by Sendra which has reduced the time for 
training the agent. 

Sendra et al. proposed a method of distribute routing on 
SDNs. They added the reinforcement learning algorithm using 
the Quagga set [11] to the OSPF routing protocol. This 
algorithm allows for changing the routing algorithms in the 
controller. The proposed routing algorithm was tested and 
compared with a traditional OSPF routing protocol based on an 
SDN topology. Using reinforcement learning in calculating the 
cost of routes and selecting optimal routes could decrease delay 
and jitter in these networks [12]. In fact, by smartly avoiding 
routes with excessive loss, a higher QoS was obtained. What 
was important in this study is the setting of the weights of the 
used parameters including available bandwidth (BW), delay, 
and packet loss. In fact, the weight of each parameter was set 
manually so that increase in any criterion would negatively 
affect the computation of the costs of links and all the criteria 
were not involved in the computation of the costs in equal 
proportions. For this reason, the selected routes did not 
maintain an acceptable level of productivity. 

Given the problems discussed above concerning the 
optimization of routing in SDNs, we decided to develop a 

method for setting the coefficients of network parameters by 
using fuzzy membership functions. In the present study, after 
generating some traffic, we measure available BW, delay, and 
loss on the network and calculate the shortest route between a 
certain source and destination by means of routing algorithms. 
The route is selected with the aim of increasing network 
productivity. In this architecture, reinforcement learning 
enables the controller as an agent in the network to begin 
learning in order to find optimal routes. 

The paper is organized as following. The second section 
discusses the fundamental concepts as well as the proposed 
architecture. It also explains how AI could be added to the 
intended scenario. Section 3 evaluates the method and 
compares it with other methods before concluding the 
discussion. 

II. BACKGROUND CONCEPTS 

A.  REINFORCEMENT LEARNING 
One of the fundamental concepts in the traffic engineering of 
SDNs is the optimization of routing as well as the finding of 
optimal routes on the network. In fact, finding a proper route 
between a source and a destination is perhaps among the central 
aims of traffic engineering [13]. Traffic engineering attempts 
to improve network management by identifying the different 
types of traffic in the network [14]. AI can greatly contribute to 
the optimization of routing in SDNs with the aim of 
accomplishing productivity. Today, use of AI algorithms in 
such architectures has resulted in a number of innovative 
solutions to the problem of routing. One of the AI techniques 
is reinforcement learning (RL) methods. Reinforcement 
learning includes three indicators, i.e., the agent, the state 
space, and the action space. The agent is an entity which begins 
learning through interaction with the environment and tries to 
maximize long-term reward by opting for the best action [15]. 
The long-term reward depends on the current reward of the 
selected action along with its future rewards. In this model, the 
agent is interacting with an ever-changing environment and 
attempts to fulfill the final goal as well as appropriate learning 
[15]. After an action, the agent receives either reward or 
penalty. When different actions have been done and the 
environment has been changed, the agent once again begins to 
learn and perform further actions. This cycle continues until the 
agent has achieved its final goal [16]. Fig. 1 illustrates the 
systemic model of reinforcement learning. In this model, the 
evaluation signals which are sent to the learning system may 
result in reinforcement or punishment. The interpreter that 
provides the learning agent with this information is at a higher 
level than the system. The training signals may be incomplete 
and affected by noise. Therefore, as the environment and the 
set of permitted actions are constantly changing, the learning 
agent must achieve its aim which is to maximize the rewards 
received during the learning time [17]. 
 

 

Figure 1. The systemic model of reinforcement learning 
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It should be noted that sometimes the agent may avoid small 
future rewards to receive bigger rewards in a more distant 
future [18]. Reinforcement learning is used to increase 
productivity in traffic engineering and packet routing in SDNs 
[19]. When reinforcement learning is embedded in an SDN, the 
controller is the agent and the network acts as the environment. 
Through reinforcement learning algorithms in an SDN we 
should select smarter routes with lower costs between the 
nodes. After receiving the feedback and inspecting the reward 
of actions, the learning agent sets the effect of distinct 
parameters on each route. Available delay, BW, and loss are 
among these parameters. There are numerous methods for 
calculating the effect of each of these parameters when 
computing the route cost. One such method is fuzzy logic. 

B.  Fuzzy Logic 
Fuzzy logic is a many-valued logic in which truth values may 
be any real number in the range from 0 to 1, inclusive of 0 and 
1. The term ‘fuzzy’ means inexact and ambiguous. Fuzzy logic 
has come to be used as a way of representing data that are not 
exact enough [20]. It is a kind of mathematical theory used for 
modeling and controlling indeterminacy problems [21]. Today, 
fuzzy logic helps with a wide range of decision-making 
problems and often produces the best decisions based on the 
input values. This logic is based on the human process of 
decision-making [22]. Fuzzy logic architecture, which is 
depicted in Fig. 2, consists of four components: fuzzifier 
module, fuzzy rule base, inference engine, and defuzzifier 
module. In a fuzzy process, a set of input data is collected and 
converted to a fuzzy set using fuzzy language variables, fuzzy 
language expressions, and membership functions. After 
fuzzification, an inference is made based on a set of rules. 
Finally, the defuzzifier module illustrates the fuzzy output as a 
clear output by using membership functions [23]. 

 

Figure 1. Fuzzy logic architecture 

III. THE PROPOSED METHOD 
The problem with traditional networks is that the routes 
selected for packet transmission could not maintain acceptable 
levels of network parameters including available BW, delay, 
and packet loss. In addition, the criteria collected from the 
network do not bear equal effects on the weight of links, which 
may increase delay and loss in the network and reduce its 
productivity. For this reason, in the present study, routing is 
done based on QoS and the routes with high levels of 
productivity are selected.  

Fig. 3 illustrates the proposed method for creating a route 
between a source and a destination. First, the intended topology 
is defined on an SDN and then the reinforcement learning 
algorithm and the fuzzy logic function are implemented on the 
controller. Traffic is produced and exchanged among the 
network nodes using different methods of traffic generation. 

First, all the switches on the network collect information about 
available delay, BW, and packet loss for every link and send it 
to the controller. Next, the controller receives these three 
parameters and passes them through to the fuzzy logic function. 
The fuzzy logic function calculates the fuzzy value of each link. 
To do this, we use three triangle fuzzy membership function 
with three different values Min, Medium and Max. The values 
which we have considered for these functions are 0, Max/2 and 
Max. In fact, Max is the maximum value of each measure.  
Afterwards, using the routing algorithms, the shortest route 
between a source and a destination is determined by means of 
the fuzzy value of each of the links. When routing is finished, 
the determined route is set up between the nodes and the 
generated traffic is transmitted through it. Several seconds after 
the execution of the scenario, the controller elicits feedback 
through the network switches and inspects the status of the 
network links in terms of available BW, delay, and loss. If the 
values of the mentioned parameters on each link of the network 
routes exceeds the specified thresholds, the route in question 
will receive a penalty; otherwise, it will be rewarded. In the 
end, the controller sets the parameters of the link of each route 
by use of fuzzy logic and repeats the routing process. 

 

 

Figure 2. The algorithm for computing the route using 
reinforcement learning and fuzzy logic 

Algorithm 1 shows the method used in this study. To 
perform this experiment, first the network switches collect the 
information about available BW, delay, and packet loss from 
the entire network links and pass it over to the SDN controller 
(line 1). Next, the controller calculates the three parameters for 
each link and gives the values to the fuzzy logic function. The 
function has three inputs and one output. The fuzzy function 
gets the three inputs and calculates the fuzzy number of each 
link using a defuzzifier function. In the end, we will have a 
fuzzy number for each link in the topology (lines from 2 to 4). 
Subsequently, using the Dijkstra algorithm, the shortest route 
between a source and destination is calculated based on the 
fuzzy numbers. In fact, the Dijkstra algorithm begins the 
routing process based on the fuzzy numbers obtained in the 
previous step. After calculating the shortest route between two 
hosts, the route is set up and video traffic is exchanged between 
the hosts (line 5 and 6).  

10 seconds after the execution of the program, the controller 
receives reports from the network switches and examines the 
values of the parameters at each link on the route (line 7). It 
should be mentioned that each of the parameters has a threshold 
values which must not be exceeded during the execution of the 
algorithm. For example, in this study, the threshold value is 80 
bps for available BW, 200 ms for delay, and 5% for packet loss. 
If the value of any of the parameters has not exceeded the 
defined threshold, the route will be rewarded; otherwise, the 
route receives a penalty (lines 8 to 13). In the end, the fuzzy 
membership functions are refreshed based on the reward or 
penalty of the previous step (line 14). This cycle will continue 
until better routes are selected for transmission of traffic over 
the network. One of the main achievements of this policy is that 
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choosing best route for traffic flows leads to less congestion. 
This is because of forwarding traffics to the links with more 
available bandwidth which reduces the probability of 
congestion. 

 
Algorithm 1. RLTE 

 
1 M ← collect D and L and BW from links  
2 for src < Number of nodes do 
3  for des < Number of nodes do 

4    F[src][des] ← Fuzzy(𝑀𝐷[src][des], 𝑀𝐿 [src][des],𝑀𝐵𝑊 

[src][des],𝑃𝑑[src][des], 𝑃𝑙[src][des],𝑃𝐵𝑊[src][des])  

5    a ← dijkstra(F [src] [des], src, des) 
6    If (a.findpath) then The path is installed end 
7    M ← collect D and L and BW from links 

8    If (𝑀𝐷 >= TH-Delay) then F-D[s][d] ← true end 

9    If (𝑀𝐿 >= TH-Loss) then F-L[s][d] ← true end 

10    If (𝑀𝐵𝑊 >= TH-BW) then F-BW[s][d] ← true end 

11    If (F-D [s] [d] == true || F-L [s] [d] == true || F-BW [s] [d] == 
true) then Calculate Penalty for the link  

12            else  Calculate Rewards for the link 
13    end 

14    Update(𝑃𝐷[src][des], 𝑃𝐿[src][des], 𝑃BW [src][des])  

15  end 
16 end 

 

IV. PERFORMANCE EVALUATION 
To design the scenario, we considered a system consisting of a 
number of switches and hosts. Fig. 4 shows the topology used 
in this study. Traffic was produced and exchanged among 
several selected node pairs using different methods of traffic 
generation. These flows were used to increase the load of 
network traffic. The hosts connected to s1 and s23 nodes were 
the intended source and destination, and video traffic was 
exchanged between these two hosts. The flow between these 
two nodes is the flow which is investigated in this study. The 
aim is to find an optimal path and increase productivity in 
transmission of traffic between the two hosts. In this paper, a 
single-path method has been used, i.e., the traffic is transmitted 
between the source and destination only through a single route. 
 

 

Figure 4. The topology of Sprint GIP network in North 
America [24] 

To avoid using expensive hardware, we constructed our 
scenario by means of Mininet emulator. Mininet was developed 
by Kaur et al. [25] as a tool for designing virtual SDNs so as to 
avoid the use of expensive specialized hardware equipment 
having tested the performance of Mininet during the 

transmission of multimedia traffic over an SDN. Jimenez et al. 
concluded that it was a powerful tool that could be used for 
experiments on SDNs [25]. This was optimized by Jimenez et 
al. in [26]. They extended the range of experiments and 
confirmed that Mininet is a reliable SDN emulator.  

The scenario was implemented in Mininet and the fuzzy 
logic and reinforcement learning were executed in the 
controller. In each execution, video traffic loads of 5, 7, 10, 13, 
and 15 Mbps were exchanged between h1 and h23 nodes as the 
intended source and destination. The simulation ran for 300 s 
and the results were recorded. In the presentation of our results, 
Sendra refers to the older method in which the coefficients of 
the parameters were set manually. In the proposed solution, 
fuzzy logic has been added to this model and the parameters 
are updated using fuzzy membership functions. The proposed 
method is called RLTE (Reinforcement Learning Traffic 
Engineering for SDN). In this study, we shall compare RLTE 
with Sendra and OSPF. We evaluate the performance of the 
three methods in terms of some important QoS metrics as 
follows: 

 Packet loss ratio: It is the fraction of received packets 
by the target to the total sent packets by the senders. 

 End-to-end delay: It is the time between sending a 
packet in the source and receiving it at the destination. 

 Received throughput: It is the volume of received 
traffic by the target nodes during a second and 
expresses by Bps (Bit per Second). 

In the end, to examine the average of the obtained results in 
RLTE and Sendra, we executed each method 10 times with 
different traffic intensities and recorded the results.  

Fig. 5 shows the end-to-end delay in the three methods. The 
horizontal axis represents the traffic transmitted between the 
source and destination, and the vertical axis represents the 
delay in milliseconds. Each of the numbers shown in the graph 
is the average of the results of multiple executions. As can be 
seen, the traditional OSPF method has more delay than the 
other methods. This might be explained by the fact that routes 
in OSPF are selected using the Dijkstra algorithm and the 
existing network parameters do not affect this selection; 
therefore, the parameters are not examined for this purpose. 
According to the results, the delay in RLTE is less than in 
Sendra. To clarify this point, Figure 6 compares the delay 
values of the two methods. 
 

 
Figure 5. Comparison of the end-to-end delay in the three 

methods 

As shown in Fig. 6, the delay values of both methods are 
relatively close to each other but the delay of RLTE is slightly 
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less than that of Sendra in all the traffic intensities transmitted 
over the network. In RLTE, the network parameters are set 
according to the fuzzy numbers; that is, route selection is 
influenced by all the parameters together, not by a single 
parameter having a low or high value. For this reason, packets 
are transmitted with less delay. 

 

 

Figure 6. Comparison of the end-to-end delay between RLTE 
and Sendra 

 
For a closer inspection of the delay in different times in the 

three methods, the end-to-end delay was specifically analyzed 
for the traffic of 7 Mbps. The results are illustrated in Fig. 7. 
As can be observed, the delay of OSPF protocol is about 60 ms, 
which has remarkably increased towards the end of the 
simulation. As the parameters are not involved in calculating 
the route in Sendra, this method shows more delay than RLTE. 
Due to using reinforcement learning and fuzzy logic, RLTE had 
less delay during the simulation. 

 

 

Figure 7. Comparison of the end-to-end delay for the traffic of 
7 Mbps in the three methods 

 
To examine the average of results as well as the minimum 

and maximum of each scenario, each method was executed 10 
times and the recorded results are presented below. Fig. 8 
shows the average delay in RLTE and Sendra. Due to the 
involvement of network parameters in RLTE, the delay values 
in this method had smaller standard deviation values than in 
Sendra, and the overall delay of RLTE in larger traffic 
intensities was less than that of Sendra. Also, the larger the 
traffic load on the network, the closer the RLTE results were to 
the average result. As the traditional OSPF method has very 
long delays (around 2000 ms) in some traffic intensities, it is 
not illustrated in the graph of the results. 

 

Figure 8. Comparison of the average delay between RLTE 
and Sendra 

Fig. 9 shows the packet loss in the three methods. The 
horizontal axis represents the traffic transmitted between the 
source and destination, and the vertical axis represents the loss 
in percentage. As mentioned earlier, the OSPF protocol does 
not take into account the network parameters in route selection 
and therefore increases packet loss. As shown in Fig. 9, loss in 
OSPF is as high as 0.4. However, it is much less in RLTE and 
Sendra. Fig. 10 shows the value of loss for the two methods. 

 

 

Figure 9. Comparison of packet loss in the three methods 

Fig. 10 shows the average loss in RLTE and Sendra. 
According to the results presented in Fig. 10, the higher the 
transmitted traffic, the less the packets lost in RLTE; however, 
loss grows at an increasing rate in Sendra. The reason is that, 
in each execution of the routing protocol in RLTE, loss is 
considered as a factor in computing the route and set via fuzzy 
membership functions in relation to the other parameters. In 
Sendra, however, the coefficient of loss is set manually and is 
not adjusted to the conditions of network links. 

 

 

Figure 10. Comparison of the packet loss between RLTE and 
Sendra 

Fig. 11 shows the packet loss in 10 executions of the three 
methods. As shown in previous parts, the average loss for all 
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traffic intensities in OSPF is greater than in the other two 
methods. As the network parameters in RLTE are set 
dynamically according to the conditions of the network, the 
loss in RLTE is expected to be less than in Sendra. As Fig. 11 
shows, the average loss in RLTE has even been recorded as 
zero for some of the traffic loads. Also, the higher the traffic 
intensity on the network, the better the performance of RLTE 
in comparison with Sendra. Thus, it can be inferred that the 
proposed method has sought to minimize loss and provide 
appropriate conditions for packet transmission. 

 

 

Figure 11. Average packet loss in the three methods 

Fig. 12 compares the jitter values in RLTE and Sendra. It 
can be observed that, as the traffic rate increases on the 
network, RLTE has less jitter than Sendra. In RLTE, after 
computing the route, packets arrive at the destination from 
more optimal routes and in shorter intervals.  

 

 

Figure 12. Comparison of the jitter between RLTE and Sendra 

 
Figure 13. Comparison of the received throughput in the three 

methods 

 

V. CONCLUSIONS 
In this study we proposed a smart routing method for SDNs. 
For this purpose, we analyzed the construction method of SDN 
topology which runs the routing protocol in a distributed 
manner. To improve routing, we implemented a smart 
algorithm based on reinforcement learning in the controller. 
The network parameters were involved in the routing process 
by means of fuzzy logic. The proposed routing algorithm was 
tested and compared with an older method and a traditional 
OSPF routing protocol based on an SDN topology. The results 
show that the proposed routing method works well and obtains 
better QoS features than the traditional method. In addition, the 
obtained jitter value is better than the values offered by 
traditional routing and the Sendra method. Thus, better quality 
and QoS values become possible by smartly avoiding routes 
with high loss values. In general, the Sendra method could 
optimize the traditional OSPF protocol and lead to better 
results. We added fuzzy logic to the proposed method. The 
obtained results under saturated conditions show that as 
network traffic becomes heavier, RLTE performs better than 
the other two methods and optimizes the functionality of 
routing protocols. 
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