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 ABSTRACT In recent years, the need for analytics on large volumes of data has become increasingly important. 
It turns out to be extremely useful in making strategic decisions about different applications. In this way, 
appropriate mechanisms must be designed to carry out data processing and integration with different platforms to 
take advantage of their best features. In this work, an architecture that works on cloud services is shown to migrate 
data stored in Big Query to an analytics engine such as Elasticsearch and take advantage of its potential in query, 
insert and display operations. This is accomplished through the use of Cloud Functions and Pub / Sub. The 
integration of these platforms through the proposed architecture showed 100% effectiveness when transferring 
data to another, maintaining an insertion rate of 4,138.30 documents per second, demonstrating its robustness, 
efficiency, and versatility when performing a data migration. This pretends to establish an architecture solution 
when it comes about handling a large amount of data as in the real world. 
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I. INTRODUCTION 
N this digital age, large amounts of data are being generated 
exponentially daily. Still, the real challenge is to analyze and 

extract value from them since we are not taking advantage of 
even a small percentage of what we have at our disposal [1]. 
We are in a world that is being driven by data. These should 
allow companies to make better decisions to improve in all 
aspects [2]. 

According to the data published in a report [3] by the 
Seagate company and the IDC consultancy, by 2025, more than 
175 Zeta Bytes of data will have been created in the world, an 
amount that will be ten times higher than that registered in 2016. 
The study also ensures that by 2025 about 20% of global data 
will be critical to our daily lives and reveals that the connected 
persons worldwide will interact with connected devices an 
average of close to 4,800 times daily [3].  

Several essential elements must be taken into account to 
obtain valuable information. Without these, any effort to deal 
with large volumes of data is almost certainly not going to 
work [1]. We mainly faced storage problems in the past, but 
now, storing large amounts of information is no longer 
particularly difficult [4]. Although the storage of large amounts 
of data is still expensive on many occasions, to solve this 
problem, we have cloud solutions [5]. A good infrastructure 
allows us to store and maintain data, but it is very little use 

without the right tools to access it [6]. The tools for managing 
large volumes of data are undergoing rapid evolution and must 
be constantly attentive and updated [7].  

Among these tools for handling large volumes of data is Big 
Query, an enterprise data warehouse solution with support for 
analysis for vast volumes of data at the scale of Petabytes [8]. 
The goal of placing the data in Google Big Query enables faster 
analysis on larger volumes of data. Making data accessible has 
become paramount. Therefore, making data available as quickly 
as possible is essential [9]. Traditional data integration solutions 
are often complex to install, configure, maintain, and develop 
data flow [10].  

Elasticsearch is a search engine for querying large volumes 
of complex data [11]. Its main characteristic is that it allows the 
data to be indexed. The answers to the executed queries are fast, 
being able to analyze the data much more efficiently. It allows 
large amounts of data processing and seeing their evolution in 
real-time [12]. In addition, it provides graphs that help to 
understand more easily the information obtained [13]. One of 
the benefits of this tool is that it can be expanded with Elastic 
Stack, a suite of products that enhance the capabilities of 
Elasticsearch [14].  

Both Big Query and Elasticsearch aim to handle large 
volumes of data. The storage power of Big Query is extremely 
useful for storing data [15]. On the other hand, the data 
aggregation capabilities, the queries in DSL format, and the 
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dynamic data visualization module of Elasticsearch bring 
significant added value to the big data solutions [16]. The 
interoperability of both systems can be merged to make more 
robust applications that handle and display large volumes of 
information optimally.  

This paper presents a cloud architecture that integrates the 
Big Query non-relational database with the Elasticsearch 
distributed analysis and analytics engine. It is intended to use 
cloud tools to interoperability systems such as Cloud Functions 
on the Pub/Sub architecture to achieve this objective. This 
paper is structured as follows. Section 2 reviews the related 
works associated with architectures for system integrations. 
Subsequently, Section 3 revises the main characteristics of 
cloud architectures and non-relational databases. Section 4 
introduces the cloud architecture proposed to integrate Big 
Query with Elasticsearch using Cloud Functions. Section 5 
shows the results of the proposal’s implementation, and Section 
6 concludes the paper. 

II. RELATED WORKS 
From the perspective of the paper “Analyzing Open Source 
GitHub Repositories Towards Technology Acceptance Model” 
[17], a proposal for analyzing public data from GitHub 
repositories available to the public in Big Query was presented. 
The article investigated the correlations and anomalies between 
the trends and the most used languages using the ELK suite [18]. 
The research concluded with an architecture that integrates data 
from Big Query and is analyzed with Elasticsearch, Logstash, 
and Kibana, which determine the correlation between trends and 
anomalies in developing technologies. Despite this, the research 
did not delve into the integration of Big Query with 
Elasticsearch, mentioning that only the API for Python of the 
Google Platform is used, without saying the use of Cloud 
Functions. 

Besides, the article “Investigation of Architecture and 
Technology Stack for e-Archive System” [19] investigated the 
technologies and architecture models necessary for an electronic 
file system. This induces the OASIS architecture model for the 
system development and details the different types of 
architecture possible to use as Web-Queue-Worker, 
Microservices, and others. It also defined the communication 
processes and the potential technologies for the analytics part. 
MongoDB and Azure were mentioned. Elasticsearch is a 
distributed search engine necessary for quick query and search 
in the model. The article concluded with a comparison of 
different styles of architecture and integration that can be used 
to develop the electronic file system. However, it did not show 
a conclusive implementation for the system, nor did it delve into 
the Cloud architecture required for data ingestion by search 
engines such as Elasticsearch. 

On the other hand, the research “Integrated Analytics for 
IIoT Predictive Maintenance using IoT Big Data Cloud 
Systems” [20] described the design and addition of Big Data 
Systems on cloud solutions for IoT systems. For this, they take 
advantage of serverless functions, cloud services, and domain 
knowledge to support dynamic interactions between human 
resources and equipment maintenance software. Among the 
technologies used are: Google Cloud Functions, Apache Nifi, 
and Hadoop Spark. A system was obtained, whose architecture 
starts from the BTS (Base Transceiver Station), which, through 
sensors and IoT gateways, sends the data to storage sources such 
as PostgreSQL and OracleDB. These are then sent through 
Google Cloud Functions to components intended for analytics 
such as Apache Nifi, Google Big Query, or Hadoop FS. The 
article also presented serverless prototypes using AMQP, 

Apache Spark, or Google Pub/Sub to integrate different 
industrial IoT devices throughout the company. 

In contrast to our research, the article proposed a high-cost 
architecture, which manages other data storage instances and 
different architectures to maintain communication between the 
storage and analysis systems. Therefore, the solution has high 
complexity. Likewise, it does not integrate Elasticsearch into 
the final proposal of its analytics system. 

To summarize, the studies presented cover Big Data 
integration architectures to be consumed by systems of the ELK 
suite and focus on solutions that use cloud services to guarantee 
scalability to a greater extent. Some used Elasticsearch as a 
means of distributed search due to its great potential when using 
the inverted index to index documents. In contrast, others 
proposed using Pub/Sub architectures to communicate the 
proposed systems’ different services. 

The present investigation differs from the previous ones by 
integrating the previous concepts through the Pub/Sub 
architecture. In that way, scalability, reliability, and availability 
are gained. Also, by optimizing the integration of Google Big 
Query with Elasticsearch through Cloud Functions, we achieve 
a stable solution that is easy to implement in different areas 
where it is needed. 

III. CLOUD ARCHITECTURES AND NON-RELATIONAL 
DATABASES 

A.  PUB/SUB ARCHITECTURE 
Software architecture is defined as a strategic design [21] that 
supports related activities to meet the business objectives aimed 
at by the software to be developed. It is intrinsically related to 
global requirements, and its solution is implemented on 
programming paradigms, architectural styles, standards based 
on aspects of software engineering, cybersecurity, and legal 
regulations [21].  

Global Software Development (GSD) is a trend lately, 
representing the development of applications through a globally 
distanced team [22]. This implies that the integration of the 
same has to be managed to reduce communication problems and 
improve control and the use and design of an architecture that 
simplifies the coordination between distributed teams.  

A Pub/Sub system works as a type of middleware with a 
client/multi-server architecture, which provides personalized 
and disseminated information by identifying and delivering a 
particular event for the interested user [23]. The main 
components of the Pub/Sub architecture are publishers, 
subscribers, and brokers. The subscribers are applications that 
generate a subscription to indicate their interest in specific 
content that a publisher will cause. The publishers are the 
information producers who publish data in the system. Then the 
brokers (servers) will be responsible for relating the 
subscriptions with the data that they are looking for and that 
have been previously published [23]. 

There are many Pub/Sub implementations in cloud 
environments, and some examples of these are Google Cloud 
Pub/Sub [24] or Amazon Pub-Sub Messaging [25]. Among all 
the providers that implement this architecture, key concepts are 
maintained. The Pub/Sub paradigm is mainly based on topics 
and messages [23]. 

Topics are specific classes of objects for customers who are 
interested in subscribing. Messages are objects that are sent 
when data is required. This works in the following way: when a 
message is published on a topic, each customer with a 
subscription to it receives the message automatically. The 
messages are serialized into an array of bytes since Pub/Sub is 
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conceived to work in distributed systems and send the data to a 
distributed network set. 

The data distributed through Pub/Sub can be topic-based. 
The messages are published on different topics. The publisher 
is responsible for defining the class of messages that subscribers 
must access and content-based. The messages are only sent to 
the subscriber if the content or attributes of the messages match 
the restrictions defined by the subscriber [23]. 

Google Cloud Pub/Sub defines the following types of 
subscription: Pull and Push [24]. Each is used for specific 
situations. The subscriber starts pulling subscriptions with a 
request to the Pub/Sub server to receive messages. Then the 
server responds with the message or an error if the queue is 
empty. Finally, the subscriber must explicitly indicate to the 
server that it received the messages correctly using an 
acknowledgement ID [24]. These subscriptions are 
advantageous when handling a large volume of messages and 
prioritizing efficiency and message processing. It is also helpful 
to guarantee HTTPS requests when there is no public endpoint 
with an SSL certificate. 

In a push-type subscription, the Pub/Sub server starts the 
process by sending the data to the subscriber through an 
HTTPS request to a preconfigured endpoint [24]. The 
subscriber must also confirm the correct reception of the 
messages. On the other hand, push subscriptions are helpful 
when the same endpoint must process multiple topics and when 
it is sought that the same Pub/Sub server implements the 
message control flow [24]. 

B.  CLOUD FUNCTIONS  
Serverless is a recent trend, referring to web applications that 
react to events [26]. This type of architecture manages to 
execute complex and distributed applications built from simple 
functions without requiring the developer to manage the servers 
or any complex operational aspect [27]. The characteristics of a 
Serverless architecture can be summarized in 3 elements. 
Granular Billing, the service is charged per use in an execution. 
No operational logic, the development team does not worry 
about architectural issues such as the auto-scaling service, 
which the service provider itself already does. And Event-
Driven applications are deployed that only respond to events 
when needed, allowing interaction with serverless applications 
that are short-lived [27]. 

A Cloud Function is a software script deployed in the 
providers’ cloud infrastructure to execute an operation in 
response to an external event [26]. These are short, stateless, and 
only run-on demand, with a single functional responsibility. The 
function implements specific business logic to achieve the goal 
of the application [27]. Its characteristics include short life, a 
small input is taken, and output is typically generated after a 
short time). Cloud Functions are devoid of operational logic, 
which means that the entire operative issue is delegated to the 
platform. They also are context agnostic, so the function does 
not need to know the environment or the reason for its execution 
[27]. 

The Cloud Functions can be activated by: an event generated 
by the cloud infrastructure (changes in the database, file upload, 
the loading of an object, a new item, notifications to be sent, 
etc.) and a direct call from the application via HTTP or the cloud 
service API. 

C.  NON-RELATIONAL DATABASES 
1) Big Query 

Google Big Query is a highly scalable Data Warehouse 
under the Serverless architecture, which comes with its built-in 

query engine. This query engine is capable of executing SQL on 
TB of data in seconds. All performance is achieved without 
having to manage the infrastructure capable of lifting the service 
[28]. 

Big Query’s serverless architecture allows different 
company parts to store their datasets and easily share them for 
seamless cross-departmental querying. It also allows third 
parties to access the data to carry out their operations if they 
have the permissions. Big Query can also be used for basic data 
warehouse workflows such as ETL (Extract, Transform, and 
Load). However, it accepts variations of it such as EL (Extract 
the data, then store it in Big Query) or ELT (Extract data, store 
it in Big Query, and then transforms it using Big Query’s built-
in query engine) [28]. 

Also, the platform is helpful to handle large volumes of 
Analytics. Big Query can store large amounts of data of 
different types: numeric, textual, even geospatial data. It can be 
done directly via the REST API to facilitate data entry or exit. 
Among its other applications, we have the Administration 
Facility. Part of the design behind Big Query is to get users to 
focus on application development and the results they expect 
from Big Query rather than infrastructure management [28]. 

2) Elasticsearch 
Elasticsearch is a distributed real-time analytics engine, first 

released in 2010 [29] and designed to organize data to make it 
easily accessible [30]. It is developed as open-source on Apache 
Lucene [31], in Java [29] and is part of the ELK suite [18], 
where we can find other tools for analytics such as Logstash and 
Kibana [29]. Elasticsearch works like a distributed document 
warehouse, saving them in JSON format [30]. 

Elasticsearch’s architecture is composed of [32]: document 
(basic Elasticsearch storage instance), index (logical storage 
location for documents. It can be divided into one or more 
Shards and is structured based on the inverted index model), 
Node (single running Elasticsearch instance), Cluster (group of 
cooperating running nodes), Shards (an index can be divided 
into smaller parts to increase efficiency by enabling parallelism. 
They can be stored on different servers), and Replicas (copies 
of shards, used for redundancy). 

Indexes in the engine are considered databases in a relational 
database system. Indexes are defined as a collection of JSON 
documents, just as databases are a collection of tables [30]. They 
manage fault tolerance by redundantly copying data and 
maintaining high data availability [30]. 

The main function of Elasticsearch is search [18]. The 
general process begins with indexing a document when it is 
saved to the system. Elasticsearch keeps two fields by default: 
the document’s original content. The other is the inverted index, 
which is generated by a series of processes such as word 
segmentation and filtering during indexing [18]. It should be 
noted that documents in Elasticsearch are indexed by default 
and do not have a schema [33], so it’s not necessary defining 
fields for data types before adding data [30]. 

Now, for searching, the user enters a keyword of the 
document he intends to access, so Elasticsearch executes a 
search in the inverted index table, after which the document 
corresponding to the keyword is related. The result is returned 
to the user [18]. 

To perform searches in Elasticsearch, Query DSL is 
provided, which is the library offered by the distributed engine 
to make the Apache Lucene query syntax more accessible to 
users [34]. The advantage of using this syntax is seen when 
making complex queries that can be done in JSON format [35]. 
Similarly, it is possible to use filters such as numeric_range 
(numeric range), and (y), or (o), among others. All 
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Elasticsearch operations are performed via HTTP REST API 
[30], for which it provides a CRUD (Create, Read, Update and 
Delete operations) [29]. 

IV. THE ARCHITECTURE FOR INTEGRATING GOOGLE 
BIG QUERY WITH ELASTICSEARCH USING CLOUD 
FUNCTIONS 
Fig. 1 shows the proposed architecture that integrates Big Query 
and Elasticsearch non-relational databases using the cloud 
components provided by Google Cloud Platforms such as Cloud 
Functions, Cloud Scheduler, and Cloud Pub/Sub. 

 

 

Figure 1. Architecture diagram to integrate Big Query with Elasticsearch using Cloud Functions. 

 
The first component of the architecture is a cron that will 

run once a day. It will be implemented in the Google Cloud 
Scheduler tool executing an HTTP request to Cloud Function 
Sync every day at 00:00 hours. This function will be activated 
through an HTTP request, and its task is to request the 
Elasticsearch cluster to obtain the last date/ hour in which data 
was inserted. If it does not find dates inserted in Elasticsearch, 
for example, in the first execution of the function, it will have 
to refer to the first date found in the Big Query dataset. After 
obtaining the specified date (let it be the last one entered in 
Elasticsearch or the first of the entire Big Query dataset), the 
function will publish a message per day in the time interval 
between the date/hour obtained from Elasticsearch and the 
current date/hour. This topic will have a pull subscription. 

The next component of the proposed architecture will be 
another cron that will run every hour. It will be implemented in 
the Google Cloud Scheduler tool executing an HTTP request to 
the Cloud Function Pull every hour. This function will access 
the pull subscription from the previous topic and extract a 
predetermined number of messages. These messages contain 
the dates to be processed for the data transfer from Big Query 
to Elasticsearch. If there are messages in this topic, the function 
publishes them in another topic with a push-type subscription. 
If there are no messages to extract from the topic with the pull-
type subscription, the function will end. 

If there are messages to process and, therefore, they have 
been published in the topic with the push type subscription, it 
will execute the main Cloud Function for each message that 
reaches that topic. This function will query to Big Query with 
the date/time it received in the message. This query will extract 

from Big Query all the rows that match this date/time. Then 
that function will gather all the rows it got from Big Query and 
perform a bulk insert operation to the Elasticsearch API. 

The main Cloud Function will finish its execution by 
publishing a message on a topic. In the message published on 
this topic, there is a predetermined number of messages to be 
processed. The topic has a push-type subscription that will 
automatically execute a Cloud Function, passing the received 
message. Said Cloud Function would request the Cloud 
Function Pull analyzed above, which is in charge of taking a 
pre-established number of messages from the topic with the 
pull subscription and publishing them on the topic with the 
push subscription. With this last action, a new cycle of 
extracting messages with date/time from a topic begins, making 
a query to Big Query to obtain data according to the date/time 
and inserting it into Elasticsearch. The process ends when there 
are no more messages to extract from the topic with the pull 
subscription. 

V. RESULTS AND DISCUSSION  

A.  IMPLEMENTATION, CONFIGURATION AND 
DEPLOYMENT 
Fig. 2 shows the followed process to deploy the architecture 
presented in the previous section. Each of the following items 
will be explained below. 
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Figure 2. Organization of work carried out. 

1) Code Application 
This part indicates the implementation of the proposed 

architecture, which was carried out in Typescript to take 
advantage of this programming language features such as ease 
of debugging, faster development, and modularity when dealing 
with applications deployed on the web. 

Client libraries of Google Big Query were used to 
implement search functions and query execution on datasets; 
Google Pub / Sub, to push and pull messages on different topics; 
and finally, Elasticsearch performed bulk operations and basic 
queries on the date. 

The iowa_liquor_sales dataset from the public project 
bigquery-public-data was selected to perform the functional test 
of the implemented architecture, which has a table called sales 
with 1,9118,960 records to date (Aug. 15, 2021). This dataset 
contains wholesale liquor purchases in Iowa by retailers for sale 
to individuals since Jan. 1, 2012. There are wholesale liquor 
orders from all supermarkets, liquor stores, convenience stores, 
etc., with details about the store, the exact location, brand, and 
size of the liquor, and the number of bottles ordered. 

2) Google Cloud Platform Project 
It covers the configuration of the Project in Google Cloud 

Platform, for which after creating a project, the Pub/Sub API 
was enabled, and one topic of pull-type was created along with 
its subscription and 2 of the push type. These last two topics 
receive a subscription generated by the cloud functions that will 
be deployed later. The Google Cloud Scheduler cron needs the 
HTTP endpoint that refers to the function they will execute, 
created after functions deployment. 

3) Elastic Cloud configuration 
The next phase focuses on deploying a cluster in Elastic 

Cloud, which was created under the services of Amazon Web 
Services, with an I/O Optimized hardware profile in version 
7.14.0. Elasticsearch has two instances, each with 120GB of 
storage, 4GB of RAM, and 2.2 vCPUs. 

Once the Cluster was created and configured, the index was 
created to store the documents inserted after being extracted 
from Big Query. The console provided by Elastic Cloud: Dev 
Tools was used. Query DSL was used to perform the operations. 
Fig. 3 shows the operation for creating mappings based on the 
data types that the dataset had configured.  

 

4) Deploy Firebase Cloud Functions 
The next part contemplates the deployment of the 

application already with the access to the project configured in 
Google Cloud Platform, the dataset selected in Big Query, and 
the Cluster deployed in Elastic Cloud, such as the endpoints and 
index with which it will work in Elasticsearch. We use Firebase 
services since it allows the deployment of cloud functions in the 
Typescript language. The configuration of the Firebase CLI is 
done by linking our already created project in Google Cloud 
Platform and enabling the Cloud Functions API. To display the 
functions, use the command:  

 
firebase deploy –only functions 

 

Figure 3. Elasticsearch mappings creation. 

This displays the functions created in our application, 
generating their respective endpoints. According to the 
architecture, two of these have to push topics as triggers, which 
will be invoked as soon as an onPublish() event, thus generating 
the missing subscriptions mentioned above.  

5) Execute Cloud Functions 
Subsequently, we execute the functions. Although we have 

the crons generated with Google Cloud Scheduler that can 
already point to the endpoints of the deployed functions, they 
will be performed directly to determine the functionality of the 
architecture. There are two endpoints to refer to: /sync and /pull. 

The first function extracts the last date inserted in 
Elasticsearch, and when it does not find any data because it will 
be the first insert, it will search for reference in Big Query, 
obtaining the first date of the dataset. Then, it generates several 
messages containing one day each, taking a start date and an end 
date with respect. These messages are deposited in the pull 
topic, ending the execution of the function. After this, the Pull 
function is executed, extracting messages inserted in the pull 
topic through the subscription generated and going through all 
the processes designated in the architecture (Fig. 1) to insert the 
records Elasticsearch. 

This process is monitored by the logs that the functions 
generate and are visible from the Google Cloud console or the 
Firebase console. 

After finishing the Pull function execution, it was verified 
that the data was inserted correctly into Elasticsearch.  
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Figure 4. Cloud Functions logs monitoring from Firebase 
console. 

6) Create Visualizations 
Finally, with the migrated data from Big Query to 

Elasticsearch, visualizations were designed in Kibana (part of 
the Elastic suite) and added to a dashboard, through which 
metrics can be obtained. Data analysis can be obtained 
performed on the dataset iowa_liquor_sales. 

B.  RESULTS ANALYSIS AND DISCUSSION 
Execution of the Sync function took 5,882 seconds, inserting 

3510 messages in the pull topic. It is referred to the 3510 days 
between the first date of the dataset 01-03-2012 and the 
execution date 08-13-2021. 

The 3510 messages published were synchronized with 
Elasticsearch using the Pull function, executed on 08-13-2021 
at 13:45, ending precisely at 15:02:49. Fig. 5 represents the 
number of unacknowledged messages pulled in the time since 
the start of the Pull function. 

 

 

Figure 5. Unacknowledged messages pulled from pull topic. 

Pull execution triggers the parallel execution of multiple 
threads with OnPublishMain, which is in charge of inserting the 
records extracted from Big Query in a specific date range into 
Elasticsearch. In Fig. 6, it is possible to see its execution, in 
which none of its invocations exceeded 1.5s. 

 

 

Figure 6. OnPublishMain function execution. 

In turn, the OnPublishSecundary function is responsible for 
extracting more messages that are still in the topic pull, 
restarting the process completely, ending when there are no 
more messages in the topic. Fig. 7 shows its execution, and none 
of its invocations exceeded 1.5s either. 

 

 

Figure 7. OnPublishSecundary function execution. 

After complete execution, 19, 118, 960 documents were 
inserted in Elasticsearch. 

Table 1. Obtained Measurements after insertion in 
Elasticsearch 

Metric Value 

Documents inserted 19,118,960 

(%) Effectiveness insertion 100% 

Execution time 77 m. 

Insertion rate docs/min 248,298.181 

Insertion rate docs/sec 4,138.303 

 
Fig. 8 shows the creation of the dashboard in Kibana, part of 

the ELK suite. This dashboard works with the 19,118,960 
documents inserted in the index sales at the end of the Cloud 
Functions execution. 

We added five visualizations that contain the location of the 
stores/buyers within the history of 2012 to date, the annual cost 
in taxes vs the total sales value, the percentage of the best-selling 
bottle packs, the number of bottles sold per month, and the 
average value in total sales per month since 2012. 

 

 

Figure 8. Kibana Dashboard. 

VI. CONCLUSIONS  
The extraction and analysis of large volumes of data generated 
over time is a latent need. Such activity has value in decision-
making for companies, historical variables, and parameters for 
research, among other applications, so many elements must be 
considered to perform these operations in the best way. 
Although storing large amounts of data is not a problem, models 
must be designed based on appropriate tools to access them 
correctly. 

The purpose of this paper is to present a Cloud Services 
architecture that integrates Big Query with Elasticsearch 
through the use of Pub/Sub and Cloud Functions. Combining 
these platforms, it seeks to take advantage of the capacity and 
ease of inserting documents in Elasticsearch, its search speed, 
and the comprehensive catalogue of options to create 
visualizations in different Dashboards that its suite offers us. In 
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this way, a robust and scalable application is generated to handle 
large volumes of data stored in Big Query and transport it to our 
analysis and visualization engine in Elasticsearch. 

Cloud architecture was designed that uses Google Cloud 
Platform services, making use of Pub/Sub for the creation of 
topics and subscriptions which store and deliver messages to the 
Cloud Functions that invoke them. These Cloud Functions are 
in charge of performing insert operations in Elasticsearch, query 
data in Big Query, and handling errors in architecture. In this 
sense, the execution of the functions can be automated with the 
creation of Cloud Schedulers, generating a robust, automatic 
execution and completely monitorable application. This 
architecture facilitates error management by implementing load 
management and message forwarding mechanisms by itself and 
being self-scalable by using Google cloud services such as 
Pub/Sub 

An experiment was performed by integrating a Big Query 
public dataset containing 19,118,960 records with an Elastic 
cloud cluster. Elasticsearch inserted as documents 100% of 
records received with an insertion rate of 4,138,303 documents 
per second, indicating the robustness and versatility of the 
deployed architecture. Likewise, visualizations were designed 
for data analysis with Kibana, part of the Elastic suite. 

To summarize, large volumes of data contain valuable 
information in different areas, so their analysis must be carried 
out using carefully selected tools and methodologies. For this, 
the integration of storage and analysis platforms can be done by 
using architectures that take advantage of the potential of cloud 
services and carry out insertion and query operations, among 
others, efficiently and quickly. The architecture presented in the 
article achieves the integration of Big Query with Elasticsearch 
through Pub/Sub and Cloud Functions thanks to the Google 
Cloud Platform services, demonstrating its scalability, 
robustness, and high performance. 
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