

475 VOLUME 21(4), 2022

Date of publication DEC-31, 2022, date of current version NOV-15, 2022.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.21.4.2783

A Microservice-based Software
Architecture for Improving the Availability

of Dental Health Records
ARCILA-DIAZ JUAN 1, CARLOS VALDIVIA2

1Postgraduate School, Universidad Nacional Pedro Ruiz Gallo. Lambayeque, Peru.
2School of Computer Engineering, Universidad Nacional Pedro Ruiz Gallo. Lambayeque, Peru.

Corresponding author: Arcila-Diaz Juan (e-mail: jcarlos.ad7@gmail.com).

 ABSTRACT In order to keep accessible, the patient care information recorded by a dental provider, a software
architecture must be designed to allow availability among the different providers.

In this research, a software architecture based on the Microservices approach is designed to enable the availability
of dental medical records. The quality attributes and functional requirements were identified to design the architecture,
determining that it should be composed of 4 Microservices, Patient, Dental Medical Record, Odontogram and Dental
Service Provider; each microservice implements its database, the secure communication between the microservices and
the clients is done through an API Gateway of HTTP resources and an authentication token.

To evaluate the software architecture, a prototype was developed in which each component was deployed in
containers using the Microsoft Azure App Service. On this prototype load tests were performed to evaluate Availability
and Performance determining that up to 21 dental records per second can be available with 100% availability, and if
the demand of requests increases the architecture scales automatically.

 KEYWORDS Dental health record; microservices; availability; software architecture.

I. INTRODUCTION
 person may seek dental care at private dental clinics,
public health facilities or with different dental surgeons on

an individual basis. If the patient goes to a dental provider for
the first time, the patient’s initial data is recorded, starting with
the patient’s data in his or her Dental Health Record (DHR) and
odontogram following the corresponding health regulations,
this information is stored either in a Paper Health Record
(PHR) or Electronic Medical Record (EMR) using an
information system, this health record is only managed by the
service provider who made the registration. Many times, the
patient must change dental providers, repeating the process of
registering their DHR data, causing additional use of time and
resources, in addition to the loss of information on the dental
procedures performed.

In Peru, Law 30024 [1] created the National Registry of
Electronic Medical Records (RENHICE), which is a database
of the affiliation of each person with a list of the health facilities
that have provided care and generated an EMR.

Research has been carried out to improve EMR
management and patient data. In [2], a cloud-based EMR-
exchange prototyping system using RESTful services was
implemented on the basis of the Integrating the Healthcare
Enterprise’s Cross-Enterprise Document Sharing integration

profile and the existing EMR exchange system in Taiwan. In
the work [3], to improve the quality and completeness of data
collected from the mother and child during their shared
maternity care and to enable the exchange of health information
between outpatient clinic, hospital and public health services in
rural Kenya, an EMR management system was implemented.

There are even works to ensure the confidentiality of EMR,
in paper [4], a solution for confidential EMR management in
the cloud is proposed, whose basic idea is to deploy a trusted
local server between the cloud and each medical information
management system.

The DHR must be managed in the same way [5], so the
software to be developed must have an architecture that allows
the availability of DHR while maintaining the security and
integrity of the information and a standard format [6].

An alternative software architecture that allows the
availability of DHR is the Service Oriented Architecture (SOA)
[7], although there is another style of software architecture
called Microservices [8], which allows applications to be
divided into its smaller components and be independent,
microservices is presented as an approach promising approach
for the development of innovative industrial applications [9],
by offering high availability [10], improving availability and
reliability as they can be used as gateways or load balancers

A

 Arcila-Diaz Juan et al. / International Journal of Computing, 21(4) 2022, 475-481

476 VOLUME 21(4), 2022

[11]. This microservices approach is being used for the design
of enterprise applications [12], as an architecture for video
game development [13], for development of route planning
systems for unmanned aerial vehicles (UAV) [14], in the
Internet of Things (IoT) scenario [15], Cattle-Health-
Monitoring System using IOT devices in real time [16],
microservices is also being used for the development of
software applications related to the medical management of
patients in the health sector, use of cloud-based healthcare-
related data management [17], for the development of drug
search systems [18], collect clinical data in the cloud [19] and
integrate predictive algorithms [20].

In the project “Development of eHealth applications based
on microservices in a Cloud architecture” [21], they present a
proposal to strengthen the Electronic Medical Record (EMR)
of Panama and the available information systems since they
present a low availability in the access and processing of their
data, thus limiting clinical-medical decision making. They
developed two information systems with software architectures
using the cloud computing paradigm (SaaS) and oriented to the
implementation of microservices. To evaluate the efficiency of
the software architectures (3 and 5 layers) of the information
systems developed with this approach, performance tests and
stress tests were used to obtain quantitative values and measure
the overall performance of the application and its interaction
with end users.

In [22], the architecture of a community health healthcare
management system using IoT and microservices technologies
is described, demonstrating efficiency in data collection and
transfer in a simulation with 1000 requests, reducing traffic by
68% and processing time from 18.3 seconds to 7.3 seconds.
Also in [23], in order to address the deployment of a suitable
and efficient architecture for a Remote Healthcare Monitoring
Systems (RHMS) propose the microservices approach to
enable its rapid extensibility, maintainability, flexibility, in
addition to fault isolation and security of healthcare data.

In this research work, a software architecture based on the
Microservices approach has been designed to enable the
availability of DHR. We started with the architecture design
process by identifying the functional requirements and
consolidating the following relevant quality attributes:
functionality, availability, security, maintainability, and
scalability. Using the decomposition into nouns it was
determined that the software architecture to be designed should
be composed of 4 microservices, Patient, Dental Health
Record, Odontogram and Dental Service Provider, each
microservice implements its independent database, they
perform a secure communication between microservices and
clients through an API Gateway of HTTP resources and a
Token.

To evaluate the designed software architecture a prototype
was developed that implements each of the components, the
architecture was deployed in containers using the Microsoft
Azure App Service with predefined features for each
microservice and the API Gateway, each microservice is
deployed and scales independently allowing them to be easy to
change and maintain [24]. On this prototype black box tests
were performed to evaluate the attribute of functionality and
security, and tests to evaluate the scalability, managing to
determine that the software architecture meets the requirements
identified. Availability and Performance has been evaluated
using load tests determining that with a single instance of the
DHR Microservice up to 21 DHR per second can be available
with 100% availability, and if the demand of requests increases
the architecture scales horizontally automatically.

II. MATERIAL
Microsoft Azure [25] cloud service has been used to deploy the
proposed architecture and test our implementation, four
containers have been configured whose characteristics are
shown in Table 1.

Table 1. Container characteristics to implement each
microservice

Feature Value
Name of service App Service
Processor Speed 1 Core 3.7 Ghz.
RAM memory 1.75 GB.
Storage 50 Gb
Region South Central USS.
Operating System Linux
Libraries .Net Core 3.1
Database Management
System SQL Server

The JMeter program was used to perform the load tests.

III. METHOD

A. DRIVERS OF QUALITY ATTRIBUTES
For the design of the Software Architecture that allows the
availability of DHR, the quality attributes were identified, in
Table 2 we can see the relevant quality drivers based on the
terminology of the ISO/IEC25010 standard.

Table 2. Architecture drivers for HCO availability
Driver Justification

Functionality

The architecture must allow the management of
DHR, odontograms, patient and dental service
providers according to formats established by
the Peruvian Dental Association.

Security
Access to patient data, DHR and odontogram
must use authentication and authorization
mechanisms.

Maintainability
The architecture must support modifications and
allow the addition of new functionalities with a
low impact on the operation of the system.

Scalability
The architecture must allow to increase its
processing capacity when DHR demand
increases.

Performance The availability of a patient’s DHR must be
ensured with optimal timing at a given time.

Availability The architecture must allow the availability of
DHRs and odontograms for each patient.

B. SOFTWARE ARCHITECTURE DESIGN
The microservices were identified using the decomposition
based on nouns, respecting the Single Responsibility Principle
(SRP) of Martin, Robert C. [26]. Table 3 presents the identified
microservices grouping functionalities related to a particular
entity (noun).

Table 3. Architecture drivers for HCO availability
Entity Tasks

Dental
Service
Provider

Register login data
Update profile data
Update access password
Authenticate and obtain token
Retrieve access data

Patient
Register patient data
Update patient data
Obtain patient data by their identity document

Dental
Health
Record

Register Dental History
Update Dental History
Obtain DHR by patient’s identity document
Obtain DHR by its identification code

Odontogram
Register Odontogram
Update Odontogram
Consult Odontogram by DHR identifier
Obtain Dental Treatments

Arcila-Diaz Juan et al. / International Journal of Computing, 21(4) 2022, 475-481

VOLUME 21(4), 2022 477

In order to be able to make requests to each of the identified
microservices these have a public endpoint (endpoint) or final
routes of the resource that can be accessed by making a request
using the Representational State Transfer protocol (HTTP

REST), using the endpoints and the HTTP REST protocol an
API has been built for each microservice. Table 4 shows the
microservices with the final routes of the resource and the type
of request.

Table 4. Microservices and tasks of the proposed model

Microservice Tasks Type of action Final Routes

Dental Service
Provider

Register access data POST / ProviderDentalService
Update profile data PUT / ProviderDentalService /{id}
Update access password PUT /ProviderDentalService / ChangePassword/{id}
Authenticate and obtain token POST /Security/Login

Patient
Record patient data POST /Patient
Update patient data PUT /Patient /{id}
Obtain patient data by their identity document GET /Patient/getByDoc/{document}

Dental Health
Record

Record Dental History POST /DentalRecord
Update Dental History PUT /DentalRecord/{id}
Obtain DHR by patient ID GET /DentalRecord/getByPatientDoc/{document}
Obtain DHR by its identification code GET /DentalRecord/ id}

Odontogram

Register Odontogram POST /Odontogram
Update Odontogram PUT /Odontogram /{id}
Query Odontogram by DHR identifier GET /Odontogram/getByDentalRecordId/{id}
Obtain dental treatment GET /Treatment /getByName/{name}

The HTTP status codes returned by the APIs each time a

request is made will be those provided by the RFC 2616
standard.

The communication between the clients and the
microservices will be done through an API Gateway, the use of
an API Gateway has been chosen since it allows encapsulating
the internal structure of the software architecture, decoupling
the clients from the microservices, keeping the architecture
secure since not all the microservices are exposed [27]. The
secure communication between the microservices, the API
Gateway and the client is performed using authentication
tokens, the token is a security mechanism during the user
session [28], the microservices approach can facilitate service
encryption and key management for authentication and
authorization using secure communication protocols [29].

The tokens are stored in the client, there is no state
information allowing the architecture to be fully scalable and
avoiding Cross-Site Request Forgery (CSRF) attacks.
Authentication will be worked in the Dental Service Provider
Microservice. The software architecture client will send and

receive response and request requests in JavaScript Object
Notation (JSON) format. Each microservice will have
responsibility over its database, the microservice will be the
only component of the software architecture that performs
insert, update and select queries on the database to expose them
through its REST API.

Fig. 1 shows the physical architecture of the proposed
model and Table 5 describes each of the elements that compose
it, considering that each logical component will be inside a
container, thus allowing automatic scalability.

C. SOFTWARE ARCHITECTURE IMPLEMENTATION
A prototype implementation of each of the components that
make up the proposed software architecture has been
developed. Fig. 2 shows the physical software architecture
taking into account the programming languages, libraries,
frameworks, database management system used for the
implementation of the prototype.

Figure 1. Physical architecture of the microservices composition model

 Arcila-Diaz Juan et al. / International Journal of Computing, 21(4) 2022, 475-481

478 VOLUME 21(4), 2022

Table 5. Elements of software architecture

Element Responsibility Properties

API Gateway The gateway provides a single point of connection or URL for client applications, then
internally maps requests to microservices. In this API Gateway has load balancer
functionality.

HTTP Requests

Client Clients are consumers of the resources provided by a microservice, they must authenticate
themselves to generate a communication token, this token must be sent in each of their
Response and Request requests to the API Gateway.

Response and request requests in JSON
format

Token The client authenticates to the architecture through the Dental Service Provider’s access
account. If the data is correct, the architecture returns a unique token. Each HTTP request
made by the client is accompanied by a token.

Software Component

Microservice Independent service that communicates through a REST API and performs specific
functionalities to satisfy the functional requirements of the business.

REST protocol for API calls

Database The microservice will be the only component of the software architecture that performs
insert, update and select queries on the database to expose them through its REST API.

Database Management System (DBMS)

Figure 2. Physical architecture of the prototype implementation of the software architecture

The prototype has been implemented to evaluate the

software architecture considering only necessary to create a
web client and a single gateway API Gateway for
communication with the microservices and the web client.

Table 6 describes each of the elements that make up the
prototype. The frameworks, libraries and other technologies for
implementing the architecture have been selected taking into
account the software development experience of the authors of
this research. The SQL Server relational database management
system has been selected taking into account the research [30],
where they determined that a Relational Database Management
System (RDBMS) shows better benefits for storing medical
records.

Table 6. Elements of the software architecture prototype

Element Responsibility Properties

API Gateway
Web

The gateway provides a single
point of connection or URL for
client applications to make
requests to services. This gateway
also performs the task of load
balancer.

Framework ASP
Net Core 3.1

Library Ocelot

Web Client
SPA VueJS

In order to test the proposed
software architecture by means of
request requests, a Single Page
Application (SPA) web client has
been developed.

VueJS Framework

JSON request and
JSON response
requests using
Axios library

Vuetify library

Token The client is authenticated in the
architecture through the Dental
Service Provider’s access account,
if the data is correct the
architecture returns a unique token
using the JWT library, after
authentication each HTTP request
must contain the token in its
header.

JSON Web Token
(JWT)

Microservice Each microservice handles
information according to the
functional requirements of the
business, exposing these
functionalities through an HTTP
resource API.

Framework ASP
Net Core 3.1

Framework Entity
Core 3.1

Database Each microservice manages its
own information, stores it and
manages it in its own database.

Microsoft SQL
Server

Arcila-Diaz Juan et al. / International Journal of Computing, 21(4) 2022, 475-481

VOLUME 21(4), 2022 479

Container Each microservice and the API
Gateway will be deployed in
different containers, this allows for
independent scalability of each
Microservice by applying
scalability policies during periods
of high demand.

Microsoft Azure –
App Service

1 Core 3.7 GHz
1.75Gb RAM
50GB Storage
South Central USS
Region

IV. RESULTS
For the design of the software architecture proposed in this
research, different decisions have been taken with the objective
of satisfying the identified quality attribute drivers, tests have
been performed to validate the software architecture according
to each attribute.

A. FUNCTIONALITY
To validate the software architecture according to the quality
attribute of Functionality and determine that the software
architecture meets the identified requirements, 3 functional
tests have been performed on the designed prototype, to
evaluate the management of Dental Service Providers, Patients,
DHR and Odontograms taking into account the established
formats. It has been determined that the software architecture
meets the identified requirements.

B. SECURITY
To validate the software architecture according to the Security
quality attribute and determine that the software architecture
complies with the identified authentication and authorization
requirements, 2 tests have been performed, one of them allows
to validate the access and token generation and the other one
the authorization to consult a DHR and odontogram. After
performing the black box tests on the prototype designed and
implemented in this research, it has been determined that the
software architecture meets the identified requirements.

C. MAINTAINABILITY
The proposed architecture has been designed under the
Microservices approach thus allowing low coupling, each
microservice is deployed independently resulting in easier
frequent updates affecting less the rest of the system and
enabling shorter delivery cycles.

D. ESCALABILITY
Scalability tests have been performed to determine if the
architecture increases its processing capacity when necessary
to meet the DHR demand. In Table 7 we can see that with 3
instances of the DHR microservice it can support up to 63
requests per second with 100% availability and meeting the
established time indicator to answer a DHR.

Table 7. Availability result with 3 instances of the DHR
microservice

Requests/Second Average time (ms) Availability (%)
45 1099 100.00%
50 1021 100.00%
55 1074 100.00%
60 1042 100.00%
62 1166 100.00%
63 1199 100.00%
65 2632 98.33%
70 4638 92.05%

E. PERFORMANCE
Table 8 shows that the architecture can respond to up to 21
requests in a given second with a single instance, thus meeting
the acceptance indicator that indicates that the architecture
should allow the availability of up to 20 DHR in 1 second.

Table 8. Response time for obtaining a DHR

Requests/Second Time response (ms)
2 849

5 748

10 696

15 686

20 680

21 662

22 4393

23 13765

F. AVAILABILITY
Table 9 shows that the architecture can have up to 21 DHRs
with a single instance of the Dental Heatlh Record microservice
without any margin of error, and from 22 DHRs onwards the
requests would be resolved incorrectly, but if 100% availability
is to be maintained, scalability rules would be applied to
automatically increase in the number of instances of the
microservice.

Table 9. Percentage of availability of a DHR

Requests/Second Availability (%)
2 100.00%

5 100.00%

10 100.00%

15 100.00%

20 100.00%

21 100.00%

22 99.84%

V. CONCLUSIONS
The quality attributes for the design of the software architecture
have been identified taking into account Peruvian regulations,
background information in the literature on medical records
systems, formats established by the Peruvian Dental
Association, and a survey of local dental surgeon specialists,
consolidating the following relevant quality attributes:
functionality, availability, security, maintainability and
scalability.

The Microservices approach has been used for the design of
the proposed architecture thus allowing the functionality,
availability, maintainability and scalability independent of each
identified microservice.

Applying the use case diagram and the decomposition into
nouns it was determined that the software architecture to be
designed should be composed of 4 Microservices, Patient,
Dental Health Record, Odontogram and Dental Service
Provider. Each microservice implements its independent
database, secure communication between the microservices
and the clients is performed by means of an API Gateway of
HTTP resources and an authentication and authorization token.

 Arcila-Diaz Juan et al. / International Journal of Computing, 21(4) 2022, 475-481

480 VOLUME 21(4), 2022

The implementation of the software architecture designed
in this research can be done independently for each
microservice and considering the technological knowledge of
the development team to implement each component.

In order to validate the software architecture according to
the quality attribute Functionality and Security, black box tests
have been performed on the developed prototype, determining
that the software architecture complies with the identified
requirements.

In order to validate the software architecture according to
the quality attribute Scalability, tests have been performed on
the developed prototype, and it has been determined that the
designed software architecture can automatically scale
horizontally when there is an increase in the demand of
requests.

The Availability attribute was evaluated using load tests on
the developed prototype that implements the designed Software
architecture, obtaining as a result that with only one instance of
DHR microservice up to 21 DHR can be accessed in a given
second with an availability of 100%, taking into account the
scalability test it is determined that with 3 instances of the
Dental Health Record microservice up to 63 DHR can be
accessed with an availability of 100%.

References
[1] Congress of the Republic of Peru, Law 30024. Peru, 2013.
[2] C. H. Wu, R. K. Chiu, H. M. Yeh, and D. W. Wang, “Implementation of

a cloud-based electronic medical record exchange system in compliance
with the integrating healthcare enterprise’s cross-enterprise document
sharing integration profile,” Int. J. Med. Inform., vol. 107, pp. 30–39,
2017. https://doi.org/10.1016/j.ijmedinf.2017.09.001.

[3] J. Haskew et al., “Implementation of a cloud-based electronic medical
record for maternal and child health in rural Kenya,” Int. J. Med. Inform.,
vol. 84, no. 5, pp. 349–354, 2015,
https://doi.org/10.1016/j.ijmedinf.2015.01.005.

[4] Z. Wu, S. Xuan, J. Xie, C. Lin, and C. Lu, “How to ensure the
confidentiality of electronic medical records on the cloud: A technical
perspective,” Comput. Biol. Med., vol. 147, p. 105726, 2022.
https://doi.org/10.1016/j.compbiomed.2022.105726.

[5] A. Acharya, N. Shimpi, A. Mahnke, R. Mathias, and Z. Ye, “Medical care
providers’ perspectives on dental information needs in electronic health
records,” J. Am. Dent. Assoc., vol. 148, no. 5, pp. 328–337, 2017.
https://doi.org/10.1016/j.adaj.2017.01.026.

[6] O. Tokede, R. B. Ramoni, M. Patton, J. D. Da Silva, and E. Kalenderian,
“Clinical documentation of dental care in an era of electronic health
record use,” J. Evid. Based Dent. Pract., vol. 16, no. 3, pp. 154–160,
2016. https://doi.org/10.1016/j.jebdp.2016.07.001.

[7] N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari, and A. R. B. C.
Hussin, “Understanding Service-Oriented Architecture (SOA): A
systematic literature review and directions for further investigation,” Inf.
Syst., vol. 91, p. 101491, 2020. https://doi.org/10.1016/j.is.2020.101491.

[8] S. Li et al., “Understanding and addressing quality attributes of
microservices architecture: A systematic literature review,” Inf. Softw.
Technol., vol. 131, p. 106449, 2021.
https://doi.org/10.1016/j.infsof.2020.106449.

[9] F. Siqueira and J. G. Davis, “Service computing for industry 4.0: State of
the art, challenges, and research opportunities,” ACM Comput. Surv., vol.
54, no. 9, 2021. https://doi.org/10.1145/3478680.

[10] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek,
“Microservice based architecture: Towards high-availability for stateful
applications with Kubernetes,” Proceedings of the 2019 IEEE 19th
International Conference on Software Quality, Reliability and Security
(QRS), 2019, pp. 176–185. https://doi.org/10.1109/QRS.2019.00034.

[11] S. R. Boyapati and C. Szabo, “Self-adaptation in Microservice
Architectures: A Case Study,” Proceedings of the 2022 26th
International Conference on Engineering of Complex Computer Systems
(ICECCS), 2022, pp. 42–51.
https://doi.org/10.1109/ICECCS54210.2022.00014.

[12] R. Kharbuja, “Designing a Business Platform using Microservices,”
Technische Universität München, 2016.

[13] A. A. Yunanto, F. F. Hardiansyah, A. A. Anantha Putra, M. B. Afridian
Rasyid, and S. Arifiani, “Development of sandbox components with
microservices architecture and design patterns in games,” Procedia
Comput. Sci., vol. 197, pp. 354–361, 2022.
https://doi.org/10.1016/j.procs.2021.12.150.

[14] L. Matlekovic, F. Juric, and P. Schneider-Kamp, “Microservices for
autonomous UAV inspection with UAV simulation as a service,” Simul.
Model. Pract. Theory, vol. 119, p. 102548, 2022.
https://doi.org/10.1016/j.simpat.2022.102548.

[15] S. Aydin and M. Nafiz Aydin, “Design and implementation of a smart
beehive and its monitoring system using microservices in the context of
IoT and open data,” Comput. Electron. Agric., vol. 196, p. 106897, 2022.
https://doi.org/10.1016/j.compag.2022.106897.

[16] I. Shabani, T. Biba, and B. Çiço, “Design of a cattle-health-monitoring
system using microservices and IoT devices,” Computers, vol. 11, no. 5,
2022. https://doi.org/10.3390/computers11050079.

[17] C. Esposito, A. Castiglione, C. A. Tudorica, and F. Pop, “Security and
privacy for cloud-based data management in the health network service
chain: A microservice approach,” IEEE Commun. Mag., vol. 55, no. 9,
pp. 102–108, 2017. https://doi.org/10.1109/MCOM.2017.1700089.

[18] J. Sadek, D. Craig, and M. Trenell, “Design and implementation of
medical searching system based on microservices and serverless
architectures,” Procedia Comput. Sci., vol. 196, pp. 615–622, 2021.
https://doi.org/10.1016/j.procs.2021.12.056.

[19] A. Garcés-Jiménez et al., “Medical prognosis of infectious diseases in
nursing homes by applying machine learning on clinical data collected in
cloud microservices,” Int. J. Environ. Res. Public Health, vol. 18, no. 24,
pp. 1–16, 2021. https://doi.org/10.3390/ijerph182413278.

[20] E. Nageba, M. Hilka, R. Gozlan, J. Dubiel, C. Baudoin, and C. Daniel,
“Microservices-Based Architecture to Support the Adaptive Records-
Trial,” Stud. Health Technol. Inform., vol. 294, pp. 283–284, 2022.
https://doi.org/10.3233/SHTI220458.

[21] H. Calderón-Gómez et al., “Development of eHealth applications-based
on microservices in a cloud architecture,” RISTI – Iber. J. Inf. Syst.
Technol., no. December, p. 14, 2019.

[22] R. Hill, D. Shadija, and M. Rezai, “Enabling community health care with
microservices,” Proceedings of the 15th IEEE International Symposium
on Parallel and Distributed Processing with Applications and 16th IEEE
International Conference on Ubiquitous Computing and
Communications, ISPA/IUCC 2017, 2017, pp. 1444–1450.
https://doi.org/10.1109/ISPA/IUCC.2017.00220.

[23] M. Ianculescu and A. Alexandru, “Microservices – A catalyzer for better
managing healthcare data empowerment,” Stud. Informatics Control, vol.
29, no. 2, pp. 231–242, 2020. https://doi.org/10.24846/v29i2y202008.

[24] N. Santos and A. Rito Silva, “A complexity metric for microservices
architecture migration,” Proceedings of the 2020 IEEE International
Conference on Software Architecture (ICSA), 2020, pp. 169–178.
https://doi.org/10.1109/ICSA47634.2020.00024.

[25] Microsoft, “App Service Microsoft Azure.” [Online]. Available at:
https://docs.microsoft.com/es-es/azure/app-service/ (accessed Jan. 20,
2022).

[26] R. C. Martin, J. M. Rabaey, A. P. Chandrakasan, and B. Nikolić, Agile
Software Development: Principles, Patterns, and Practices. University
of California, 2003.

[27] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira, “Security in
microservices architectures,” Procedia Comput. Sci., vol. 181, pp. 1225–
1236, 2021. https://doi.org/10.1016/j.procs.2021.01.320.

[28] M. Krämer, S. Frese, and A. Kuijper, “Implementing secure applications
in smart city clouds using microservices,” Futur. Gener. Comput. Syst.,
vol. 99, pp. 308–320, 2019. https://doi.org/10.1016/j.future.2019.04.042.

[29] R. S. de O. Júnior, R. C. A. da Silva, M. S. Santos, D. W. Albuquerque,
H. O. Almeida, and D. F. S. Santos, “An extensible and secure
architecture based on microservices,” Proceedings of the 2022 IEEE
International Conference on Consumer Electronics (ICCE), 2022, pp. 1–
2. https://doi.org/10.1109/ICCE53296.2022.9730757.

[30] J. E. Díaz Montejo, D. F. Bellon Cely, and J. S. González Sanabria, “A
comparative study between temporary databases and relational databases
applied to Electronic Health Records,” Rev. Ing. USBMed, vol. 6, no. 1,
pp. 46–53, 2015. https://doi.org/10.21500/20275846.1723.

Arcila-Diaz Juan et al. / International Journal of Computing, 21(4) 2022, 475-481

VOLUME 21(4), 2022 481

ARCILA-DIAZ JUAN, a Master in
Systems Engineering, Universidad
Nacional Pedro Ruiz Gallo, Peru. He
works as a software project leader and
software development teacher. His
research areas are Information
Systems, Software, Intelligence
Artificial and Computer Vision.

VALDIVIA CARLOS, a Master in
Systems Engineering. He works as a
Professor of the School of Computer
Engineering, Universidad Nacional
Pedro Ruiz Gallo, Peru. His research
areas are Information Systems,
Software, Intelligence Artificial and
Computer Vision.

