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 ABSTRACT Continuous Hopfield network is a recurring network that has shown its ability to solve important 
optimization problems. Continuous Hopfield network dynamic system is characterized by a differential equation. 
This equation is difficult to solve, especially for large problems. This led researchers to discretize the differential 
equation using Euler’s method. However, this method generally does not converge to a good solution because it 
is sensitive to the step size decision and initial conditions. In this work, we discretize the dynamic system of 
continuous Hopfield network by a new method of Runge-Kutta. This method is strong in terms of stability and 
performance in order to converge to a better solution. This new method introduces two phases for better network 
stability. The first phase targets to solve the dynamic equation by the Euler method, while the second phase allows 
refining the solution found in the first phase. Experimental results on benchmarks show that the proposed approach 
can effectively improve Hopfield neural network performance. 
 

 KEYWORDS Continuous Hopfield network, Runge-Kutta method, Euler method. 
 

I. INTRODUCTION 
ONTINUOUS Hopfield networks are dual-use networks, 
which can be used either as a way to solve optimization 

problems or as an associative memory in the field of image 
processing. In 1982, a new model named after its inventor John 
Hopfield enriched the field of artificial neural networks [1]. In 
artificial neural networks, information is one-way from input to 
output. While for continuous Hopfield network, the input turns 
into the output. This transformation is provided by a continuous 
transfer function to achieve network stability. For mature 
stability, the weight matrix should be symmetrical. The 
convergence of the continuous Hopfield network at a state of 
equilibrium is calculated by the energy function that decreases 
with time.  

The dynamic system of this network is characterized by a 
differential equation. The discretization of this differential 
equation, with the Euler method, has been a subject of work for 
many researchers [2, 3]. However, this method has limitations 
related to the decision of the step size. To overcome this 
problem, we discretized the dynamic system of this network by 
a new second order Runge-Kutta method [4]. This method has 
proven its ability to bring the network back to mature stability. 
This method is guided by two important phases. The first phase 
consists in finding an approximation of the solution and the 
second phase refines the solution for a better approximation. 

The dynamic system of this network becomes more robust with 
the new approach by comparing itself to the classical network.  

The success of Hopfield Artificial Neural Networks is due 
to its ability to cope with many optimization issues. The main 
idea of our approach is to adopt the behavior of the Runge-
Kutta method with continuous Hopfield networks to ensure 
better convergence. 

This paper presents a new approach to improve the 
convergence of the artificial neural network algorithm. To 
evaluate the proposed approach, we modeled the maximum 
stable problem as a quadratic problem and then as a Hopfield 
quadratic energy. Then we proceeded to a process of combining 
between the two algorithms on different instances. 

The rest of paper is organized as follows. First, section 2, 
describes continuous Hopfield network. In section 3, a new 
approach is proposed for the maximum stable set problem. 
Section 4, presents and discusses the experimental results. 
Finally, we conclude the article in section 5. 

II. CONTINUOUS HOPFIELD NETWORK  
Hopfield Network is a fully connected neural network with a 
symmetrical matrix of connections. In the process of 
convergence, the dynamics of these networks converge to one 
of the equilibrium positions. These equilibrium positions are 
determined in advance during the learning process [5]. These 
are local minima of the functional energy of the network. Such 

C



 Mohammed El Alaoui et al. / International Journal of Computing, 22(1) 2023, 29-34 

30 VOLUME 22(1), 2023 

a network can be used both as an associative memory and a way 
to solve some optimization problems [6-10]. Unlike many 
neural networks, which operate until a response is received 
after a certain number of iterations, Hopfield network operates 
until equilibrium is reached when the current state of the 
network is exactly equal to the previous state. 

The neurons of Continuous Hopfield Network (CHN) are 
interconnected with an activation function called hyperbolic 
tangent used to calculate the output of each neuron. The 
dynamics of CHN is described by the following differential 
equation: 

 
 = − + 𝑇𝑣 + 𝑖 .    (1) 

 
The neuron input vector 𝑣 = (𝑣 ) and the neuron output 

𝑢 = (𝑢 ) with 1 ≤ 𝑖 ≤ 𝑛 and 𝑢 ∈ {0,1}. 
The weight matrix is given by 𝑇 = 𝑇 , with 1 ≤ 𝑖 ≤ 𝑛 

and 1 ≤ 𝑗 ≤ 𝑛 and 𝑖 is the neuron bias. 
The output of each neuron is calculated by the following 

formula: 
 𝑣 = − 1 + tanh ,   (2) 

 
where 𝑢  is a parameter used to control the gain of the enable 
function. 

The point of network stability is known as the system 
equilibrium point. This stability is ensured by the Lyapunov 
function which is a stable system decreasing over time [11]. 
Updating each neuron makes it p ossible to draw a path, which 
converges to an attractor of the network. The convergence of 
the Hopfield neural network is ensured by the use of the 
Lyapunov function, which offers the possibility of finding a 
local minimum. Hopfield demonstrated that the existence of the 
Lyapunov function is ensured by the symmetry of the weight 
matrix with zero diagonal. In [12], therefore, the existence of 
the equilibrium point is guaranteed. Then the following 
Lyapunov function exists: 

 
 𝐸(𝑥) = − 𝑥 𝑇𝑥 − (𝑖 ) 𝑥 +

∑ ∫ 𝑔 (𝑣)𝑑𝑣. 
   (3) 

 
Hopfield neural network can be applied to any 

combinatorial problem, which seeks to optimize an objective 
function: 

 𝐸(𝑥) = − 𝑥 𝑇𝑥 − (𝑖 ) 𝑥.   (4) 

 
Lyapunov idea is based on the energy of the system. In 

order for the energy of this system to converge to zero as time 
tends to infinity, a system could be characterized as stable. In 
this sense, the continuous Hopfield network can be seen as a 
solver of important optimization problems. We consider the 
following quadratic problem with 𝑛 variables and 𝑚 linear 
constraints: 
 

 

(𝑃)

⎩
⎪
⎨

⎪
⎧𝑀𝑖𝑛 𝑣 𝑄𝑣 + 𝑞          

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                     
𝐴𝑣 = 𝑏                            
𝑣 ∈ {0,1}, 1 ≤ 𝑖 ≤ 𝑛  

.   (5) 

The quadratic programming presented above can be solved 
using the following sets: 

𝐻 = {𝑥 ∈ [0,1] } is a set of Hamming hypercube elements. 
𝐻 = {𝑥 ∈ 𝐻 ∶  𝑥 ∈ {0,1} ∶ 𝑖 = 1, … , 𝑛} is a set of the 

elements of Hamming hypercube corners. 
𝐻 = {𝑥 ∈ 𝐻 ∶  𝐴𝑥 = 𝑏} is a set of feasible solutions. 
Each given instance is solved by associating its equilibrium 

points with the local minima of the optimization problem. The 
energy function can also be defined by: 

 
 𝐸(𝑥) = 𝐸 (𝑥) + 𝐸 (𝑥)  ∶   ∀𝑥 ∈ 𝐻.    (6) 

 
𝐸 (𝑥) is proportional to the objective function of the 

problem. 
𝐸 (𝑥) is a function to satisfy the constraints in order to 

ensure the feasibility of each solution. 
The introduced energy function is intended to overcome the 

problem observed on the energy functions used by the authors.  
In this article, our intimate goal is to solve the maximum 

stable set problem by a new approach. To do this, we have two 
important phases. In the first phase, we solve the dynamic 
equation of the system by a new Runge-Kutta method for better 
convergence. In the second phase, we represent the maximum 
stable problem as a 0 − 1 quadratic problem. 

III. CONTINUOUS HOPFIELD NETWORK IMPROVED FOR 
MAXIMUM STABLE PROBLEM 
Hopfield system process dynamics consists of adopting a 
robust method to find a solution with a better approximation. 
The first step of this work is to find a quadratic model for the 
maximum stable problem, then to convert this model to a 
continuous Hopfield network. The second step is to adopt the 
Runge-Kutta method to discretize the Hopfield differential 
equation. This method goes through two important phases. The 
first phase is the prediction phase, which consists in finding the 
solution by using the Euler approach. The second phase is the 
most important to refine the solution found in the first phase. 
First, we start the presentation of the formulation of the energy 
function associated with this maximum stable. Next, we select 
a practical setting of this function [13]. Then, a search 
algorithm based on the Runge-Kutta is proposed. 

A.  MAXIMUM STABLE PROBLEM 
Maximum stable problem is represented as an undirected graph 
 

𝐺 = (𝑉, 𝐸) with 𝑉 = 𝑣 , 𝑣 , ⋯ , 𝑣 . 
 
A stable set of a graph 𝐺 = (𝑉, 𝐸) is a subset 𝑆 of 𝑉 such 

that the subgraph generated by S does not contain an arc. 
Maximum stable set problem (MSSP) consists in finding a 

stable set in the graph 𝐺 of maximum cardinality 𝛼(𝐺). 
Alongside its theoretical interest, the MSSP problem arises in 
information retrieval, experimental design and computer vision 
applications [13]. 

The stable set problem is NP-hard and even difficult to 
approximate [14]. The MSSP problem can be solved by using 
polynomial time algorithms for special classes such as perfect 
graphs, pie graphs and graphs with long odd cycles [15]. 
However, the existence of a polynomial time algorithm for 
arbitrary graphs seems unlikely. In the literature, several 
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researchers focused their research on solving exactly the 
maximum stable problem. 

Carrahan and Pardalos [16] proposed an implicit 
enumeration technique. Computational results for different 
relaxations of linear programming stable set were reported by 
Gruber and Rendl [17]. An effective evolution of the taboo 
research approach was presented in the original works of 
Friden, Hertz and de Werra [18]. 

To solve the MSSP problem using the proposed approach, 
it must be expressed as a linear assignment problem with a 
quadratic constraint. Let 𝑆 ⊂ 𝑉 be a stable set of nodes. For 
each node 𝑣  of the graph 𝐺, we introduce the binary variables 
 𝑥  such that: 

 
 𝑥 =

1       𝑖𝑓 𝑣 ∈ 𝑆    
0       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.    (7) 

 
Two adjacent nodes 𝑣  and 𝑣  cannot be in the set 𝑆 :  
 

 (𝑣 , 𝑣 ) ∈ 𝐸 ⇒ 𝑥 𝑥 = 0.    (8) 
 

The constraints can be expressed in the following form: 
 

 ℎ(𝑥) = ∑ ∑ 𝑏 𝑥 𝑥 = 0.    (9) 
 

Relationship between two neurons is defined by 
 

 
𝑏 =

1        𝑖𝑓 𝑣 , 𝑣 ∈ 𝐸

0        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
.    (10) 

 
The objective function of the mathematical programming 

model is: 𝑓(𝑥) = − ∑ 𝑥 . Consequently, the 𝑀𝑆𝑆𝑃 problem 
can be expressed in the following algebraic form: 

 
 

(𝑄𝑃) =

⎩
⎨

⎧
𝑀𝑖𝑛  𝑓(𝑥) = − ∑ 𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                   

ℎ(𝑥) = ∑ ∑ 𝑏 𝑥 𝑥 = 0

𝑥 ∈ {0,1}

.    (11) 

 
The formulation of the energy function for a maximum 

stable problem is done as follows: 
 

 𝐸(𝑣) = 𝛼 ∑ 𝑣 + 𝜙 ∑ ∑ 𝑏 𝑣 𝑣 +

𝛾 ∑ 𝑣 (1 − 𝑣 ). 
   (12) 

 
The weights of the matrix are given by the following 

formulation: 
 

 𝑇 = −𝜙𝑏 + 2𝛿 𝛾.    (13) 
 

The Kronecker symbol is given as follows: 
 

 
𝛿 =

1    𝑖𝑓 𝑖 = 𝑗
0     𝑖𝑓 𝑖 ≠ 𝑗

.    (14) 

 
The parameters 𝜑, 𝛾 and 𝛼 must be chosen so that the 

equilibrium point of the Hopfield network associated with the 
MSSP is achieved. The setting procedure is obtained from the 
partial derivative of the energy function: 

 

 = −𝛼 + 𝜙 ∑ 𝑏 𝑣 + 𝛾(1 − 2𝑣 ).    (15) 

 
The parameterization is determined by the hyper plane 

method [9]. Before processing, certain conditions are necessary 
to simplify the determination of these parameters: 𝜑 >  0, 𝛾 >
 0. To minimize the objective function, we impose the 
following constraint: 𝛼 >  0. 

B.  PROPOSED APPROACH FOR CONTINUOUS 
HOPFIELD NETWORK  
Hopfield artificial neural network architecture is considered to 
be the basis of modern algorithms. It is commonly used to 
reconstruct degraded, noisy or incomplete data. In addition, 
continuous Hopfield network is interesting for solving many 
combinatorial problems such as constraint programming and 
database query optimization [19–21]. The dynamics of this 
network is characterized by the differential equation, which has 
the following form: 
 

 = 𝑓(𝑢).    (16) 

 
Energy function is defined by 
 

 𝑓(𝑢) = 𝑇 × tanh(𝑢) − 𝐼.    (17) 
 

Euler method is often used to solve the dynamic equation 
of the Hopfield network. The following form defines this 
method: 
 

 𝑢 = 𝑢 + ℎ × 𝑓(𝑢 ).    (18) 
 

This method suffers from initial state and step size. This 
leads to bad quality of local solutions when using this method. 
To overcome this problem, we adopt in this work a new method 
for better precision of network stability. This method named by 
Runge-Kutta of the second order [22]. The basic idea is to go 
through two important phases. The first phase consists in 
finding an approximation of the solution  𝑢  by Euler 
method. 

 
  𝑢 = 𝑢 + ℎ𝑓(𝑣 , 𝑢 ).    (19) 

 
In the second phase, the new solution is incorporated into 

the function to calculate the final solution of the function. This 
phase makes it possible to refine the final solution for better 
precision: 

 
 𝑢 = 𝑢 + ℎ

( , ) ( , )
.    (20) 

 
By substituting (1) for (2), we finally get a new 

representation of the second order Runge-Kutta method 
formula: 

 
 𝑢 = 𝑢 + 𝑓(𝑣 , 𝑢 ) + 𝑓 𝑣 + ℎ, 𝑢 +

ℎ𝑓(𝑣 , 𝑢 ) . 
   (21) 

 
The Runge-Kutta method and the Euler method are 

evaluated with a constant step ℎ =  0.1. We have two 
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parameters, the step size ℎ and the order used to control the size 
of the local error. Practical methods of solving differential 
equations use such estimates of the local error to determine 
whether the current choice of step size ℎ is adequate. The 
following example represents the two methods described 
above. In order to show the efficiency of the Runge-Kutta 
method, we compare the convergence of each method for each 
iteration. The example was used for comparison purposes: 

 

Figure 1. Runge-Kutta approximation 

The Runge-Kutta method is the most accurate method to 
approximate the differential equation solution. In addition, the 
second order Runge-Kutta method requires two stages of 
differential equation evaluation while Eulers method requires a 
single evaluation of the differential equation. Therefore, one 
could say that the approximation of the solution generated by 
the Runge-Kutta method gives better solutions by comparing 
with the Euler method for a constant step ℎ =  0.1 and 
𝑥 (0)  =  0 and 𝑦 (0)  =  1. By evaluating the approximation 
of the following differential equation: 𝑦 = 𝑦 + 1, we get the 
results shown in Fig. 1. 

The use of a precise method to approximate a solution for a 
differential equation is necessary to solve the continuous 
Hopfield network. To overcome the weakness of the classical 
neural network we adopted the second order Runge Kutta 
method. 

By combining this method in Hopfield continuous network 
we can improve the convergence of this network towards a 
better attractor. The following algorithm is proposed to ensure 
convergence. 

 
Proposed algorithm 
Input 
-Graph 𝐺 =  (𝑉, 𝐸) 
-Weight matrix and bias vector; 
-Initialize system settings. 
-Use of the second order Runge Kutta method. 
-𝑢  ← Initial solution generated randomly. 
 
Start 

1) ∆𝐸 = 𝐸(𝑢 ) − 𝐸(𝑢 ) 
2)  𝑢 = 𝑢 + ℎ𝑓(𝑣 , 𝑢 ) 

3) 𝑢 = 𝑢 + 𝑓(𝑣 , 𝑢 ) + 𝑓(𝑣 ,  𝑢 )  

4) 𝑣 = 1/2[𝑡𝑎𝑛ℎ + 1] 

The stopping criterion is false 
End 
Output: Maximum stable subsystem 

In the proposed algorithm, we have introduced a new 
method to refine the solution obtained by the Euler method in 
order to guarantee a better approximation. First, we evaluate 
the differential equation for an approximate solution. Secondly, 
we refine the solution found by a second evaluation of the 
differential equation. The criterion for stopping this network is 
to check if the previous state is the same as the current state. 

IV. SIMULATION RESULTS 
The theoretical results presented in this article are evaluated 
with a set of reference instances. A number of neurons and a 
number of constraints between each pair of neurons 
characterize each instance. To approve the effectiveness of the 
proposed method we used three groups of instances. The 
proposed algorithm was able to converge towards a point of 
stability using the energy function characterizing the 
continuous network of neurons. This algorithm has been 
implemented on a Core 𝑖7 8𝐺 Ram desktop computer. The 
programming language used is the java language. The setting 
used is proposed only once for all instances to validate the 
capacity of the new method. 

Each instance is represented as an input for our model to 
calculate stable points. In addition, the initial states are 
generated from the following formulation: 

 
 𝑥 = 0.999 + 10 𝑡.    (22) 

 
The variable 𝑖 represents the index number of each neuron. 

The total number of neurons is 𝑛. The variable 𝑡 is a random 
uniform variable in the interval [0.5,0.5]. 

To validate the proposed method, it turned out to be 
necessary to use multiple instances. We performed three 
experiments on brock, p_hat and hamming/johnson instances. 
The brock instance has a number of neurons ranges from 200 
to 800 and the number of constraints ranges from 9876 to 
208166. The instance p_hat has a number of neurons ranges 
from 300 to 1500 and a number of constraints is between 
10933 and 568960. The hamming/johnson instance has a 
number of neurons between 28 and 1024 and a number of 
constraints is between 210 and 518656. For this experiment, 
we have performed 100 tests to give the average number of 
stable points for each instance. The following figures represent 
the results of the convergence of the proposed approach 
towards an optimal solution. The recorded result for each 
instance is the number of stable points using the continuous 
Hopfield lattice combined with a new discretization method. 
From the observation of all the figures, we can confirm that the 
proposed approach gives a better convergence with respect to 
its classical method antecedent. In particular, the optimal 
solution is well obtained with the higher complexity graphs. 
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Figure 2. Brock instance with a number of neurons varies 
between 200 to 800 

 

 

 
 

Figure 3. p_hat instance with number of neurons varies 
between 300 to 1500 

 
Figure 4. Hamming/Johnson instance with a number of 

neurons varying between 28 and 1024 

V. CONCLUSION 
In this work, the dynamic system of artificial neural network is 
discretized by a new method named Runge-Kutta to guarantee 
better stability of Hopfield neural network. This method is 
guided by two important phases. The first phase is to find an 
approximation of the solution and the second phase seeks to 
refine the solution to ensure a better approximation. In order to 
verify the performance of the proposed approach benchmarks 
are used in the experiments. The experimental results show that 
the proposed method can effectively help artificial neural 
networks to find best solutions on the majority of instances. 
Like a new research direction, the proposed approach can help 
to solve many optimization problems such as the optimization 
of database queries. 
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