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 ABSTRACT The purpose of this article is to elaborate performance of the hybrid model of Simulated Annealing 
(SA) and 2 Opt algorithm for solving the traveling salesman problem (TSP). The SA algorithm used in this article 
is based on the outer and inner loop SA algorithm. The hybrid algorithm has promising results in solving small 
and medium-scale symmetric traveling salesman problem benchmark tests taken from the TSPLIB reference. 
Results of the optimal solution and standard deviation indicate that the hybrid algorithm shows good performance 
in terms of reliability and stability in finding the optimal solution from the TSP benchmark case. Values of average 
error and standard deviation for all simulations in the medium scale are 0.0267 and 644.12, respectively. Moreover, 
in some cases namely KroB100, Pr107, and Pr144, the hybrid algorithm finds a better solution compared with the 
best-known solution mentioned in the reference. Further, the hybrid algorithm is 1.207 – 5.692 times faster than 
the pure outer and inner loop-based SA algorithm. Additionally, the results show that the hybrid algorithm 
outperforms other hybrid algorithms such as SA – nearest neighbor (NN) and NN – 2 Opt. 
 

 KEYWORDS simulated annealing; 2 opt algorithm; traveling salesman problem; hybrid simulated annealing – 
2 opt algorithm. 
 

I. INTRODUCTION 
PTIMIZATION problems have become one of the most 
active research areas to date. The technique of 

optimization is a branch of science that involves searching for 
parameter values in solving a particular problem. The 
optimization is designed to find a solution for a predetermined 
objective function through an iterative process toward the 
optimal value. Here, the mathematical representation of the 
objective function is defined with a clear constraint that 
depends on the problems [1]. One of the well-known problems 
in optimization is called the traveling salesman problem (TSP). 

The TSP is an active research topic in optimization 
problems. This problem aims to find the shortest route with the 
constraint that all cities are visited exactly once and return to 
the initial place of departure. Finding the shortest route has its 
difficulties since the solution involves a combinatorial 
procedure. Therefore, TSP is also known as the NP-hard 
problem in combinatorial optimization [2]. There are two types 
of TSP problems, e.g., symmetric and asymmetric TSPs that 
are distinguished by the distance between cities. The 
characteristic of symmetric TSP is given by the distance 
between two cities in a constant. Meanwhile, the characteristic 
of asymmetric TSP is the distance between two cities that 
varies depending on where we start [3]. Various approaches 
have been studied and used by researchers to solve TSP. One 
of them is called the simulated annealing (SA) algorithm. 

The SA algorithm was introduced to solve the 
combinatorial optimization problem by Kirkpatrick et al. in 
1983. The main idea of this algorithm is that it is possible to 
accept a less than optimal solution that depends on a certain 
probability function. Using this algorithm will certainly be able 
to produce a global optimum value. However, the use of 
random numbers in the calculation process affects the results to 
be obtained. These results can be in the form of optimal or non-
optimal solutions [4]. 

The SA algorithm is one of the efficient methods to handle 
optimization problems both continuously and discretely. This 
SA algorithm was originally formed from the problem of 
simulating the metal cooling schedule. The SA algorithm has 
the advantage of not requiring an initial solution close to the 
solution. Despite many benefits, this algorithm has drawbacks 
such as poor performance and slow convergence when applied 
to complex TSP [5]. Various modifications were done to 
improve the performance of the SA algorithm. Several studies 
about the modification of the SA algorithm can be found in 
some references [4-17]. 

The following are some modifications made to the SA 
algorithm which are proven to improve the performance of the 
algorithm in solving TSP: 
 The use of a combination of outer and inner loops in the 

SA algorithm [4]. 
 The use of four vertices and three lines of inequality to 

O
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find the optimal Hamiltonian circuit [5]. 
 The use of a list-based cooling scheme to control the 

temperature parameters [6]. 
 The use of adaptive temperature control to reduce the 

temperature adaptively based on a certain temperature 
function [7]. 

The combination of the SA algorithm with other 
metaheuristic algorithms in solving TSP is also used to 
overcome the shortcomings of each algorithm by their 
advantages. Some of the combinations of these algorithms 
include the SA with water flow-like algorithm (WFA) [8], the 
SA with symbiotic organisms search optimization algorithm 
(SOS) [9], the SA with ant colony optimization (ACO) [10], 
the SA with genetic algorithm (GA) [11, 12], the SA with gene 
expression programming (GEP) [13], and the SA with particle 
swarm optimization (PSO) [14]. 

In addition to combining with other metaheuristic 
algorithms, other search algorithms are also used to overcome 
the shortcomings of the SA algorithm in obtaining the optimal 
TSP solution. For example, by adding a tabu search algorithm 
[15], the use of an adaptive simulated annealing algorithm with 
a tabu search and 2-opt algorithm [16] and a greedy search 
algorithm [17] has also been shown to improve the 
performance of the SA algorithm. 

According to [4], the combination of outer and inner loops 
in the SA algorithm can simplify the algorithm in finding local 
solutions. Continuing the research, started in [4], by adding 
process loops at one temperature before the temperature 
reduction scheme is carried out and incorporating 2-opt local 
searches is the focus of this article. In addition, to see the 
performance of the proposed algorithm, the search for solutions 
from 43 TSP benchmark tests with several cities from 16 – 
1060 obtained from TSPLIB [18] will be simulated. 

II. RESEARCH METHOD 

A.  SIMULATED ANEALING (SA) 
Kirkpatrick, Gelatt, and Vecchi introduced the simulated 
annealing algorithm in combinatorial optimization problems in 
1983. This algorithm was inspired by the physical annealing of 
solid [19-22]. In general, there are two processes, namely 
(1) increasing the temperature to the maximum temperature so 
that the solid melts; (2) the decrease in temperature follows a 
certain temperature reduction scheme until it reaches the 
ground state of the solid [20, 21]. 

According to references, the SA algorithm is one of the 
simplest and most popular methods for dealing with difficult 
global optimization problems [20]. In addition, the SA 
algorithm can improve the exploitation of finding solutions 
without being trapped in the local optimal [8]. The possibility 
of obtaining the global optimum solution is inseparable from 
the cooling scheme used. The algorithm will be stuck in the 
optimal local solution if the temperature drops rapidly. 
Meanwhile, if the temperature is controlled properly, the 
algorithm will get a global optimal [22]. The performance of 
the SA algorithm is judged to be lacking in its poor 
performance and slow convergence when applied to complex 
TSP [5]. The main drawback of this algorithm is that it does not 
consider the system’s state when searching for the optimal 
solution. Thus, it is difficult to predict the convergence of the 
system with the SA algorithm [22]. 

One way to improve the algorithm performance is to use the 

interaction between the outer and inner loops of the algorithm. 
The use of the results from the inner loop as the outer loop input 
is proven to improve the performance of the SA algorithm in 
solving small-scale symmetric TSP problems with the number 
of cities from 9 – 225. The use of these interactions gives good 
results compared to several other algorithms such as ACO (ant 
colony optimization), PSO (particle swarm optimization), 
SFLA (shuffled frog leaping algorithms), GA (genetic al-
gorithm), BHA (black hole algorithm), STA (state transition al-
gorithm) in completing the TSP symmetric benchmark test [4]. 

However, using interaction to get the optimal solution still 
requires much time, especially for many cities. In addition, the 
relative error rate compared to the best-known solution (BKS) 
of each of these benchmark tests tends to increase with the 
increase in the number of cities. In this article, the reduction of 
computational time in finding the optimal TSP solution and 
decreasing the error rate is the goal of this research. In order to 
achieve this goal, a two-optimization (2-opt) local search 
algorithm will be combined. 

B.  2 OPT ALGORITHM  
Croes introduced a two-optimization (2-opt) algorithm to solve 
the TSP case [23]. This algorithm is a simple local search 
algorithm. In order to decrease the total length of the route/tour, 
an edge swap in the tour is performed [2]. In this case, two 
crossing routes are identified and rearranged so that they do not 
cross each other. As an illustration of this algorithm, it can be 
seen in Fig. 1. 
 

 

Figure 1. The illustration for the 2-opt algorithm. 

Suppose there is a route that passes through cities 𝐴, 𝐵, 𝐶 and 
𝐷 as shown in Fig. 1 (left). In this case, there are two paths that 
cross each other (intersect each other), namely path 𝐴 to 𝐷 
(𝐴𝐷) and path 𝐶 to 𝐵 (𝐶𝐵). To minimize the overall route 
distance, a new path will be formed with the following 
conditions: 

𝑑(𝐴, 𝐵) +  𝑑(𝐶, 𝐷) <  𝑑(𝐴, 𝐷) +  𝑑(𝐵, 𝐶), (1) 

where 𝑑(⋅,⋅)is the distance metric. If the conditions in (1) are 
met, then the 𝐴𝐷 and 𝐶𝐵 paths are replaced with 𝐴𝐵 and 𝐶𝐷 
paths so that the current path does not contain cross paths, as 
shown in Fig. 1 (right). 

C.  HYBRID SA – 2 OPT ALGORITHM  
The combination of the SA algorithm with the 2-opt algorithm 
is carried out to improve the SA algorithm performance. 
Merging this algorithm is done directly. First, the solution of 
the TSP case will be searched using the SA algorithm then the 
results of the algorithm are optimized using the 2-opt 
algorithm. It should be noted that this SA algorithm uses the 
interaction between the inner and outer loops as described in 
[4]. Moreover, the addition of a loop for temperature is also 
carried out. Here is the hybrid algorithm: 
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Algorithm 1 

SA – 2 Opt procedures  

Set the initial value T, 𝑆  using (2), 𝐸 , 

𝑆  and 𝐸   

For 1 to n 

  Set m = 0 

  While (m ≤ number of city or T ≥ 0.01) do 

Update State S, Calculate Energy E 

using (3) 

Optimize the state using 2-opt 

algorithm 

Calculate Δ𝐸 = 𝐸 − 𝐸 , 𝜔 ∈ [0,1], 𝑝 using 

(1) 

If Δ𝐸 < 0 then  

Set S = 𝑆, 𝐸 = 𝐸 

If 𝐸 < 𝐸  then 𝑆 = 𝑆 , 𝐸 = 𝐸  

            Else go to Step 11 

Else  

If  p > ω  then go to Step 5 

Else go to Step 11 

  End while  

If satisfying Inner Loop Termination     

Criteria, then 

Do cooling schedule 𝑇 = 𝑇 × 𝑟 

Go to Step 3 

End For 

 

The initial state of the SA algorithm is generated according 
to the following conditions: 

 
𝑆 = {1, 2, 3, 4, 5 … , 𝑀}, (2) 

 
where 𝑀 represents the number of cities of TSP cases. The 
calculation of energy (distance) follows the following equation 
 

𝐸 =  ∑ 𝑑 + 𝑑 , (3) 
 
where 𝑑 represents the distance between two cities in the state. 
At the same time, 𝑑  is the distance from the last to the first 
city in that state. The acceptance criterion of a worse solution 
depends on the value of p, which is defined as: 
 

𝑝(∆𝐸, 𝑇) = 𝑒
∆

∆𝐸 > 0
1 ∆𝐸 ≤ 0

. (4) 

III. RESULTS AND DISCUSSIONS 
Here, a numerical simulation experiment is performed to see 
the performance of the modified SA algorithm. The first 
simulation was carried out to see the performance of the 
algorithm compared to the SA algorithm with the interaction of 
inner and outer loops as described in [4]. Meanwhile, the next 
experiment was conducted to see the performance of the 
algorithm in solving other symmetric TSP cases. All of these 
numerical experiments were conducted in  C++ programming 
language and run using a PC with Windows 10 pro-64-bit OS, 
Intel® Core™ i7-8550U CPU @ 1.80 GHz processor, and 16 
GB RAM. The values of the parameters used are the cooling 
rate, r = 0.9, initial temperature, T = 1000, inner    loop (m) = 
number of cities, outer loop (n) = 20, inner loop stopping 
criteria: temperature < 0.01 or iteration > number of cities. 

A.  COMPARISON WITH PURE OUTER AND INNER LOOP-
BASED SA ALGORITHM 
In this case, a numerical experiment was conducted to test the 
performance of the SA – 2 Opt algorithm in solving symmetric 
TSP cases consisting of 16 – 225 cities. Comparisons were 
made with the results of the SA algorithm presented in 
reference [4]. The results of this comparison are presented in 
Table 1. 

In the article [4], there are two cases of symmetric TSPs, 
namely cases taken from the benchmark data available in 
reference [18] and the case of the square grid TSP. SG denotes 
this TSP square grid case in Table 1. It can be seen in the table 
that the performance of the SA – 2 opt algorithm is better than 
that of the SA algorithm in the article [4] from the aspect of BS 
(best solution), Ave (average solution), and WS (worst 
solution), indicated in bold letters. The SA – 2 Opt algorithm 
can find optimal solutions in 13 of the 21 cases mentioned. 
While the SA algorithm [4] only found 6 of the 21 cases. In 
addition, the SA – 2 Opt algorithm can find a more optimal 
solution than BKS (the best-known solution) in the case of 
Gr96. The BKS of those cases was 514 [24]. While the solution 
generated by the algorithm SA – 2opt is 510.8863. As an 
illustration of the optimal route for the Gr96 case, both the 
results of the SA [4], BKS [18], and SA – 2 Opt algorithms are 
presented in Fig. 2. In addition, comparison plots for several 
other cases are also presented in Fig. 3 and Fig. 4. 

 

   

Figure 2. Results of the Gr96 TSP solution. BKS [18] (left), proposed algorithm (middle) and SA [4] (right). 
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Table 1. Comparison results of hybrid SA – 2 opt algorithm and SA algorithm in [4] 

Case BKS BS [4] Ave [4]  WS [4] Ave.Time [4] BS Ave WS Ave.Time Speed Up 

Ulysess16 73.9876 73.9876 74.2239 74.4602 0.1665 73.9876 73.9876 73.9876 0.138 1.207 
Ulysess22 75.3097 75.3097 76.2203 76.8119 0.3106 75.3097 75.3097 75.3097 0.144 2.157 
Att48 33522 33882.48 34766.3 34846.67 0.5306 33523.7 33523.7 33523.7 0.181 2.931 
Eil51 426 430.89 444.41 444.74 0.6051 428.88 429.13 433.93 0.167 3.623 
Berlin52 7542 7544.366 7845.61 8341.865 0.6172 7544.366 7544.37 7544.37 0.191 3.231 
St70 675 697.8861 708.807 727.8492 1.0369 677.1096 677.502 684.953 0.241 4.302 
Eil76 538 563.6019 575.556 594.2049 1.2333 545.3876 547.965 554.958 0.401 3.076 
Gr96 514 539.9611 550.015 558.2102 1.8726 510.8863 511.354 512.924 0.329 5.692 
KroA100 21282 21632.56 22956.7 24181.94 1.8989 21285.44 21289.1 21357.8 0.434 4.375 
Eil101 629 673.4284 688.984 708.6054 1.9990 643.9111 647.613 651.378 0.475 4.208 
Ch130 6110 6356.304 6443.35 6657.21 3.2852 6110.722 6140.74 6210.84 0.675 4.867 
SG6 36 36 36.7249 36.8284 0.3551 36 36 36 0.1771 2.005 
SG7 49.4142 49.4142 50.5188 51.0711 0.4053 49.4142 49.4142 49.4142 0.1958 2.070 
SG8 64 64 64.9527 66.4853 0.9037 64 64.0828 64.8284 0.2314 3.905 
SG9 81.4142 81.4142 82.5740 86.3848 1.2858 81.4142 81.4556 82.2426 0.2878 4.468 
SG10 100 100.8284 103.038 104.1421 1.4590 100 100.124 100.828 0.4061 3.593 
SG11 121.4142 123.0711 124.562 125.5563 2.1928 121.4142 121.828 122.243 0.5673 3.865 
SG12 144 147.3137 150.904 152.2843 3.6069 144 144 144 0.6802 5.303 
SG13 169.4142 174.3848 176.594 177.6985 4.284 169.4142 169.414 169.414 1.2243 3.499 
SG14 196 201.799 206.217 208.4264 5.6313 196 196 196 1.1775 4.782 
SG15 225.4142 232.8701 235.713 237.8406 8.9315 226.2426 226.698 228.728 1.8346 4.868 

 

Figure 3. Results of the Ch130 TSP solution.  BKS [18] (left), proposed algorithm (middle) and SA [4] (right). 

 

Figure 4. Results of TSP SG14 solution. The proposed algorithm (left) and SA [4] (right) 

The average simulation time performance for each inner 
loop can be seen in Table 1. It can be seen in the table that the 
average computation time of the SA – 2 Opt algorithm is better 
than that of the SA algorithm [4] for all the cases mentioned. 

The results obtained for these cases show that the SA – 2 Opt 
algorithm has a faster computation time of 1.207 – 5.692 times 
than the SA algorithm [4]. Given the better results of BS, Ave, 
and WS, the addition of the 2 Opt algorithm can improve 
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algorithm performance in finding optimal solutions and 
increase computational time.  

Fig. 3 and Fig. 4 show comparison results of the proposed 
algorithm and SA algorithm in [4] when solving TSP with 130 
cities and 196 cities, respectively. It is clearly seen that the 
proposed algorithm outperforms the SA algorithm in [4] for 
both cases. Further, the proposed algorithm gets the same route 
as the best-known solution mentioned in [18] (TSP with 130 
cities) and [4] (TSP with 196 cities). These findings state that 
the proposed algorithm has good performance in solving TSP. 

B.  COMPARISON WITH OTHER HYBRID ALGORITHMS  
To see further performance of the proposed algorithm, a 
comparison with other hybrid algorithms is carried out. The 
other algorithms are the hybrid simulated annealing – nearest 
neighbor (SA – NN) algorithm and the nearest neighbor – 2 
optimal (NN – 2 Opt) algorithm. The numerical experiment 
was conducted in solving symmetric TSP cases consisting of 
16 – 299 cities. Results of the hybrid algorithms in solving the 
benchmark cases are presented in Table 2. 

Table 2 presents the numerical simulation results for the 
TSP cases in terms of the best solution (BS), average solution 
(Ave), and worst solution (WS). The simulation results are 
compared with the BKS in the reference [18] and the other two 
hybrid algorithms. The number of cities in these cases varies 
from 16 to 299. This selection was made to see the algorithm 
performance in solving TSP with a few cities (TSP size) to 
more (small-medium scale TSP). The solved TSP cases and 
their simulation results are presented in Table. 2.  

From Table 2, it can be said that the SA – 2 Opt algorithm 
has a good match in finding the optimal solution from the BKS 
mentioned in reference [18]. Moreover, the proposed algorithm 
gets better results than the other two hybrid algorithms. This is 
indicated in bold writing presented in Table 2. In addition, the 
SA – 2 Opt algorithm also obtains a better optimal solution than 
the BKS written in [18] for the cases of KroB100, Pr107, and 
Pr144. The plot of our result of the cases can be seen in Fig. 5. 

C.  PERFORMANCE OF THE HYBRID ALGORITHM IN 
SOLVING MEDIUM SCALE TSP 
The next numerical experiments are carried out to see further 

performance of the proposed method in solving TSP cases with 
more cities. The number of cities in these cases varies from 315 
to 1060. This selection was made to see the algorithm 
performance in solving TSP with a medium-scale TSP given in 
[18]. The simulation results are compared with the BKS in the 
reference. The solved TSP cases and their simulation results are 
presented in Table. 3. 

Table 3 shows the numerical simulation results for the TSP 
cases in terms of the best solution (BS), average solution (Ave), 
worst solution (WS), standard deviation (STD. Dev), and 
average computation time for one inner loop (Ave.Time). From 
the table, it can be said that the SA – 2 Opt algorithm has a good 
match in finding the optimal solution from the BKS mentioned 
in reference [18]. This is indicated by the relative error values 
as presented in Table 3.  

The standard deviation is used to see the stability and 
reliability of the algorithm in finding the optimal solution to the 
problem. A smaller value indicates that the algorithm is more 
stable and reliable in finding the optimal solution [25]. The 
standard deviation of the SA – 2 Opt algorithm is presented in 
Table 3 in the STD column. Dev. The standard deviation value 
of the SA – 2 Opt algorithm varies from 79.89 – 2085.7. From 
Table 3, it can be said that this algorithm has a good 
performance in terms of reliability and stability in finding the 
optimal solution from the TSP benchmark cases. 

The relative error for each case can be seen in Table 3. The 
BE column represents the best error value, AveE represents the 
average error value, and WE represents the worst error value 
obtained using Eq. 5. The BE values varied from 0.005592 to 
0.04137, the AveE values varied from 0.010012 to 0.057179, 
and the WE values varied from 0.017458 to 0.092546. It is 
indicated that the proposed method has promising results in 
solving the symmetric TSP. 

 

𝐵𝐸 =
𝐵𝑆 − 𝐵𝐾𝑆

𝐵𝐾𝑆
, 

 𝑊𝐸 =
𝑊𝑆 − 𝐵𝐾𝑆

𝐵𝐾𝑆
,   

𝐴𝐸 =
𝐴𝑣𝑒 − 𝐵𝐾𝑆

𝐵𝐾𝑆
. 

(5) 

 
 

 

Figure 5. Optimal solution results for cases of KroB100 (left), Pr107 (middle), and Pr144 (right). 
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Table 2. Comparison results of hybrid SA – 2 opt, SA – NN, and NN – 2 Opt algorithm 

Case BKS SA – 2 Opt SA – NN NN – 2 Opt 

BS Ave WS BS Ave WS BS Ave WS 

Ulysess16 73.9876 73.9876 73.9876 73.9876 73.9876 73.9876 73.9876 73.9876 73.9876 73.9876 

Ulysess22 75.3097 75.3097 75.3097 75.3097 75.3097 75.3097 75.3097 75.3097 75.3097 75.3097 

Att48 33522 33523.7 33523.7 33523.7 33523.7 33527.9 33607.7 33523.7 33547.6 33872.2 

Eil51 426 428.88 429.13 433.93 428.98 429.85 432.37 430.24 431.76 435.51 

Berlin52 7542 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 

St70 675 677.1096 677.502 684.953 677.1096 677.1139 677.1945 677.1945 677.910 681.534 

Eil76 538 545.3876 547.965 554.958 549.9961 551.4574 555.1221 551.9872 555.002 560.637 

Pr76 108159 108159.4 108159.4 108159.4 108159.4 108159.4 108159.4 108159.4 108229.8 108276.7 

Gr96 514 510.8863 511.354 512.924 511.7315 511.409 511.9407 514.0526 514.672 518.113 

Rat99 1211 1219.24 1219.73 1224.08 1224.59 1229.59 1247.36 1226.462 1227.674 1250.697 

KroA100 21282 21285.44 21289.1 21357.8 21294.4 21296 21298.98 21380.38 21396.6 21552.1 

KroB100 22141 22139.07 22150.73 22197.33 22191.33 22224.81 22346.61 22245.18 22255.32 22346.61 

KroC100 20749 20750.76 20757.26 20852.28 20750.76 20754.24 20820.37 20816.37 20866.64 21159.13 

KroD100 21294 21294.29 21328.13 21478.49 21294.29 21294.29 21294.29 21481.15 21500.03 21582.08 

KroE100 22068 22073.25 22078.74 22161.3 22107.53 22156.05 22216.05 22078.67 22167.85 22565 

Eil101 629 643.9111 647.613 651.378 652.4963 653.017 656.205 656.0167 657.184 658.934 

Lin105 14379 14382.99 14384.15 14406.12 14382.99 14382.99 14382.99 14383 14390.42 14420.1 

Pr107 44303 44301.68 44306.13 44346.19 44301.68 44305.16 44324.84 44337.36 44405.93 44503.03 

Pr124 59030 59030.74 59030.74 59030.74 59030.74 59030.74 59030.74 59030.74 59048.36 59074.8 

Ch130 6110 6110.722 6140.74 6210.84 6134.592 6152.313 6217.597 6176.014 6192.97 6207.90 

Pr136 96772 96875.82 96956.52 97543.82 97547.25 97725.07 98459.30 98447.39 98772.69 98962.76 

Pr144 58537 58535.2 58536.9 58568.77 58535.2 58535.2 58535.2 58535.22 58538.58 58568.77 

KroA150 26524 26524.86 26640.87 26803.01 26729.99 26756.67 27033.09 26983.32 27095.1 27344.91 

KroB150 26130 26140.3 26188.5 26551.2 26396.48 26428.94 26468.62 26505.17 26523.85 26878.71 

Ch150 6528 6533.81 6565.32 6612.98 6593.021 6593.021 6593.021 6622.825 6622.825 6622.825 

Pr152 73682 73683.64 73701.86 73881.68 73683.64 73711.98 73907.78 73843.09 73845.69 73846.56 

Rat195 2323 2351.23 2356.58 2396.05 2375.385 2375.385 2375.385 2388.146 2395.457 2398.59 

KroA200 29368 29463.13 29544.56 29756.51 29666.4 29666.4 29666.4 29666.4 29666.4 29666.4 

KroB200 29437 29588.3 29630.3 29986.9 29951.92 30109 30541.03 30204.76 30312.75 30512.03 

Pr226 80369 80461.17 80904.18 81317.47 80635.47 80663.16 80751.66 80596.9 80616.69 80676.05 

Pr264 49135 49135 49207 49352.28 49767.9 49812.39 50138.23 49822.65 49852.21 49970.47 

Pr299 48191 48468.15 48819.68 50091.91 49227.5 49310.18 49736.69 49071.26 49312.1 49938.31 

SG6 36 36 36 36 36 36 36 36 36 36 

SG7 49.4142 49.4142 49.4142 49.4142 49.4142 49.4142 49.4142 49.4142 49.4553 50.2426 

SG8 64 64 64.0828 64.8284 64 64 64 64 64 64 

SG9 81.4142 81.4142 81.4556 82.2426 81.4142 81.4142 81.4142 81.4142 81.4142 81.4142 

SG10 100 100 100.124 100.828 100 100 100 100 100 100 

SG11 121.4142 121.4142 121.828 122.243 122.243 122.243 122.243 122.243 122.864 123.899 

SG12 144 144 144 144 144 144 144 144 144 144 

SG13 169.4142 169.4142 169.414 169.414 170.2426 170.2426 170.2426 172.307 172.412 173.5563 

SG14 196 196 196 196 196 196 196 196 196 196 

SG15 225.4142 226.2426 226.698 228.728 228.7279 228.7279 228.7279 229.5563 230.136 230.385 
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Table 3 Results of the proposed algorithm in solving medium-scale symmetric TSP 

Case BKS BS  Ave  WS STD.Dev BE AveE  WE  

Lin318 42029 42433.15 42845.78 43805.65 342.18 0.009616 0.019434 0.042272 

Pr439 107217 108039.9 108290.4 109088.8 405.38 0.007675 0.010012 0.017458 

Pcb442 50778 51851.2 51968.9 52709.1 239.01 0.021135 0.023453 0.03803 

U574 36905 37962.51 38257.52 38732.99 196.61 0.028655 0.036649 0.049532 

Rat575 6773 7049.36 7132.23 7329.89 79.89 0.040803 0.053048 0.082222 

P654 34643 34836.74 35028.86 35915.18 269.24 0.005592 0.011138 0.036723 

D657 48912 50284.86 50594.24 52717.38 616.42 0.028068 0.034393 0.0778 

U724 41910 43144.86 43878.97 45520.22 681.43 0.029465 0.046981 0.086142 

Rat783 8806 9163.44 9309.52 9620.96 126.37 0.040591 0.057179 0.092546 

Pr1002 259045 269762.7 272846.8 277447.7 2043.1 0.04137 0.05328 0.07104 

U1060 224094 233324.6 235565 242353.4 2085.7 0.041191 0.051188 0.081481 

 

IV. CONCLUSIONS 
Implementation of the hybrid model of simulated annealing and 
2 opt algorithm has been conducted. The SA algorithm is based 
on the outer and inner loop SA algorithm described in [4]. 
Some simulations of small-scale and medium-scale symmetric 
traveling salesman problem benchmark tests taken from [18] 
have been carried out to see the performance of the hybrid 
algorithm. The hybrid algorithm shows good performance in 
terms of reliability and stability in finding the optimal solution 
from the TSP benchmark case. It can be seen from the values 
of errors and standard deviation. Values of average error and 
standard deviation for all simulations in the medium scale are 
0.0147 and 272, respectively. Moreover, in some cases namely 
KroB100, Pr107, and Pr144, the hybrid algorithm finds a better 
solution compared with the best-known solution mentioned in 
[18]. Further, the proposed algorithm outperforms the SA 
algorithm in [4] in finding the optimal solution for the cases 
and computational time. The hybrid algorithm is 1.207 – 5.692 
times faster than the SA algorithm in [4]. Further, the proposed 
algorithm is also better than the other two hybrid algorithms, 
i.e., NN – SA and NN – 2 Opt algorithm, in solving the TSP 
benchmark cases.  
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