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ABSTRACT A search for an optimal value of a complex multi-dimensional continuous function is
still one of the most pressing problems. The genetic algorithms (GA) and evolution strategies (ES) are
methods to solving optimization problems that is based on natural selection, the process that drives
biological evolution. Our goal was to use evolutionary optimization methods to find the global optimal
value (minimum) of a non-smooth multi-dimensional function with a large number of local minimums.
We took several test functions of different levels of complexity and used evolution strategies to solve
the problem. The standard evolution strategies, which work well with smooth functions, gave us various
points of local minimums as a solution, without finding the global minimum, for the complex function. In
our work, we propose a new approach: the cross-selection method, which, in combination with previously
developed methods - adaptive evolution strategies, gave a good result for the searth for the global minimum
the complex function.

KEYWORDS Evolution Strategies, Cross-Selection Method, Optimization, Evolutionary Operators,
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I. INTRODUCTION
Many disciplines involve optimization at their core. In
physics, systems tend towards their lowest energy state sub-
ject to physical laws. In business, corporations are focused
on maximizing profits. In biology, the fittest organisms
are more likely to survive. Mathematically, each of these
processes is described using an objective function that
depends on various parameters. Depending on the optimiza-
tion problem, relevant parameters might include effjciency,
safety, phisical metrics or precision. Optimization problems
are often posed as a search in a space defined by a set of
coordinates - values of these parametrs.

The basic optimization problem is:

F (x)→ opt, x ∈ X.

Here, X is a feasible set, a solution search domain, and x
is a design point. A design point can be represented as a
vector of values corresponding to difgerent design variables.
An n-dimensional design point is written:

x = (x1, x2, ..., xn)

Any value of x from among all points in the feasible set X
that minimizes the objective function is called a solution or
minimizer.

A huge number of methods are devoted to solving this
problem: direct methods, stochastic methods, methods of
discrete and continuous optimisation. In recent years, evolu-
tionary methods: genetic algorithms and evolution strategies
have been added to these methods (see [1], [2] and their
bibliography). Which algorithm is the best? There is no
reason to prefer one algorithm over another for all optimiza-
tion problem. If one algorithm performs better than another
algorithm to one class of problems, then it will perform
worse to another one.

Our goal was to find the global optimal value (minimum)
of a complex function with a large number of local minima.
We took several functions of different levels of complexity: a
spherical function (Fig.1(a)), Ackley function (Fig.1(b)) and
Weierstrass function (Fig.2) for the test. These functions are
defined and continuous in Rn. The Weierstrass function is
the most complex a non-smooth multi-dimensional function
with a large number of local minimums. The majority of the
optimization methods cannot find minimum of this function.

VOLUME 22(1), 2023 69



Larysa O. Khilkova et al./ International Journal of Computing, 22(1) 2023, 69-77

We used classical and new, proposed in this work, evolu-
tionary algorithms, namely evolution strategies, to solve the
problem.

The evolutionary algorithms (EA) originate in the 70s
of the 20th century. The processes that drive biological
evolution were the basis of them. There are three main
variants of the evolutionary algorithms: genetic algorithms,
evolutionary programming and evolution strategies. The
evolution strategies (ES), the third main variant of EA, were
founded by students at the Technical University of Berlin
(TUB) (see [3], [4]). Namely, it is the third direction that
our work is devoted to. The standard evolution strategies:
(1+1), (λ+µ), (λ, µ), simple and adaptive, which quickly
find a solution for smooth functions, for example spheri-
cal function, cannot find a global solution the Weierstrass
function.

We propose a new approach: the Cross-Selection Method.
This method, as well as other evolutionary algorithms, is
based on a biological idea. We act like a biologist who wants
to improve the fitness of a plant: we take two selected good
specimens and cross them with each other. The resulting
offspring can have very high fitness. The cross-selection
method in combination with adaptive evolution strategies,
which we called cross-selection adaptive evolution strategy
(CS+AES), gave a good result for the searth for the global
minimum of Weierstrass function.

II. MATERIAL AND METHODS
A. STATEMENT OF THE PROBLEM
Suppose we have to optimize some obgective or quality
function F , called the fitness-function, with respect to
a set of decision variables or control parameters x :=
{x1, x2, ..., xn}, which in the context of evolution strategies
often referred to as object parameters

F (x)→ opt, x ∈ X.

X is the search domain, it can be discrete or continuous,
finite or infinite. For example, the real-valued n-dimensional
space Rn, the space of integers Zn, or the binary space Bn

can be used as a search domain. In our work, the search
domain

X ∈ Rn.

As the optimal value, we consider the minimum

F (x)→ min, x ∈ X.

B. TEST FUNCTIONS
We took three n-dimensional test fitness-functions: spheri-
cal, Ackley and Weierstrass functions. In Fig.1, 2 you can
see plots of these test functions for n = 2.

• The spherical function (Fig.1(a)):

f(x) =

n∑
i=1

x2i , xi ∈ [−5.12, 5.12]. (1)

Figure 1. (a) Spherical function, (b) Ackley function

Figure 2. Weierstrass function

This smooth function with a single extremum is often
used as a test function for various combined ( [1], [5]–
[7]) algorithms. This is a good preliminary test to check
the performance of any optimization algorithm.

• The Ackley function (Fig.1(b)):

f(x) = 20 + e− 20 exp

(
−0.2

n∑
i=1

x2i
n

)

− exp

(
n∑
i=1

cos2πxi
n

)
, xi ∈ [−2, 2].

(2)

This test function was proposed in [8]. Numerous local
extrema of this smooth test function make it a rather
difficult optimization problem of finding the global
extremum.

• The Weierstrass function (Fig.2):

f(x) =

n∑
i=1

{
kmax∑
k=0

[
ak cos(2πbk(xi + 0.5))

]}

−n
kmax∑
k=0

[
akcos(πbk)

]
, xi ∈ [−0.5, 0.5],

a = 0, 5, b = 3, kmax = 20.

(3)

This test function was proposed in [9]. This multidi-
mensional function is very difficult to optimize, it has
many local extrema, in addition, it has an interesting
property: by n → ∞, it is everywhere continuous,
but nowhere differentiable. The vast majority of clas-
sical optimization algorithms cannot find the global
extremum of the Weierstrass function. We use this
function to test the performance of the considered
evolution strategies.
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Test functions have different levels of complexity for
optimization: the simple spherical function with a single
minimum, the smooth Ackley function with many local min-
ima, and the most complex non-smooth Weierstrass function
with a huge number of local minima, which is practically
impossible to optimize. We are testing our algorithms on
these functions.

All these functions have a global minimum at the origin
x∗ = 0 and

Fmin = F (x∗) = 0.

The main criterion of quality for all considered evolution
strategies is a order of approach of solution to the known
global minimum.

C. BASIC EVOLUTION STRATEGY (ES)
Evolution strategies operate on populations P(κ) =
{α1, α2, ..., ακ} of individuals αi (i = 1, ..., κ) of a size
κ. Each individual αi can be considered as a union of
object parameters xi = {xi1, xi2, ..., xin}, a set of strategy
parameters si and a value fitness-functions F i = F (xi)

αi := (xi, si, F i).

We assume that the individuals in the population are ordered
according to the value of the fitness-function

P(κ) = {α1, α2, ..., ακ}, F 1 � F 2 � ...� Fκ.

So, α1 has the best fitness-function.
The goal of the evolution strategy is to obtain a popu-

lation P(g)(κ) whose first individual is a solution to the
optimization problem with a given precision.

Denote:
1) P

(g)
p (µ) is a parent population at the g-th stage of

evolution (the number of a generation), consisting of
µ members;

2) P
(g)
c (λ) is a child population at the g-th stage of

evolution, consisting of λ members.
Basic algorithm ES can be represented as the following

pseudo-code:

Algorithm 1 Basic ES
g := 0
Initialize P0

p(µ) := a random population
while not (Stop criteria) do
P

(g)
c (λ) := Evolution operators (P

(g)
p (µ))

P
(g+1)
p (µ) := Selection (P

(g)
p (µ),P

(g)
c (λ))

g := g + 1
end while

The main evolutionary operator applied to the parent
population is mutation. It is the only operator on the parent
population for ES(1 + 1). In strategies like ES (µ + λ),
mutation is supplemented by a recombination operator. The
selection operator is used in all ES and sets up the direction
of evolution in the object parameter space.

As termination conditions the standard stopping rules can
be used:

• Resource criteria:
– maximum number of generations;
– maximum program run time.

• Convergence criteria:
– in the space of fitness-values;
– in the space of object parameters;
– in the space of strategy parameters.

Our goal is to obtain a solution to the optimization
problem with high precision. We will look at several dif-
ferent ESs and discuss how they fulfill this problem for the
considering us functions.

D. EVOLUTIONARY OPERATORS
In the evolution strategies we are considering, three evolu-
tionary operators are used:

• selection operator;
• mutation operator;
• recombination operator.

1) Selection
The selection operator with different variations is used in all
evolutionary algorithms. Just as in the wild world, an animal
that is more adapted to the conditions of the surrounding
world has a higher chance of producing offspring, so in
ES we leave the set of object parameters that give the best
value of the fitness-function for the production of future
generations.

The selection operator that selects µ individuals of the
next generation can be defined as follows:

Selection(µ) := {α1
γ , α

2
γ , ..., α

µ
γ},

where the αiγ is the i-th best individual of the γ individuals
of the current generation.

The value of γ is defined differently for ES (µ+λ) and ES
(µ, λ). In an ES of the first type, µ individuals are selected
from the parent and child populations and γ = µ+ λ. This
ensures that the best obtained individual always remains in
the new population. In ES of the second type, the selection
of a new parent population is made only from the child
population, i.e. γ = λ and the condition µ � λ is natural.
ES of the second type guarantees complete renewal of the
population at each evolutionary step.

Both types of selection have their own specific appli-
cations. ES (µ, λ) is recommended for use in unbounded
spaces, such as the object space X = Rn (see [4]), while
ES (µ+ λ) are recommended for discrete and finite object
spaces (see [10], [11]). We use only ES (µ+λ) in our work.

2) Mutation
The mutation operator is the main one for ES. The general
task of the operator is to slightly improve the set of object
parameters in such way as to get into the domain of a local
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extremum. Each new value x is defined as the offset of its
old value along the random mutation vector r

xi = xi−1 + r. (4)

The original ES (see [3], [4]) was designed for dis-
crete problems and used small mutations in the discrete
search space. In [12] ES was modified for use in op-
timization continuous functions, it was proposed to use
the vector of normally distributed random values r :=
{N(0, σ1), N(0, σ2), ..., N(0, σn)} as a random mutation
vector. Besides normally distributed mutations, Cauchy mu-
tations ( [13]–[16]) have also used in the context of ES
and evolutionary programming. Other interesting approach
has proposed in [17], in which the authors use the natural
gradient to update a parameterized search distribution in
the direction of higher expected fitness. Now de facto
standard in continuous domain evolutionary computation is
Covariance Matrix Adaptation-ES ( [18]–[20]), in which the
mutation ellipsoids are not constrained to be axis-parallel,
but can take on a general orientation.

In our work, we propose to define the mutation vector
r = {r1, r2, ..., rn} as follows

r1 = σ1 · ρ · cosφ1 · cosφ2 · · · · · cosφn−1;

r2 = σ2 · ρ · sinφ1 · cosφ2 · · · · · cosφn−1;

r3 = σ3 · ρ · sinφ2 · · · · · cosφn−1;

. . .

rn = σn · ρ · sinφn−1,

(5)

where
ρ ≥ 0, φ1 ∈ [0, 2π], φ2, ..., φn−1 ∈

[
− π/2, π/2

]
are hyperspherical coordinates, σ1, σ2, ..., σn are constants
specifying the spread of values for each of the coordinates,
ρ = N(0, 1), ρ ≥ 0 is a normally distributed random
positive variable, and the angles φ1, ..., φn−1 are uniformly
distributed each in its range. We assume that all random
variables ρ, φ1, ..., φn−1 are independent. And then the
probability density function in hyperspherical coordinates
for the mutation vector is equal

p(r) = p(ρ, φ1, ..., φn−1)

= p(ρ) · p(φ1) · ... · p(φn−1)

=
e−ρ

2/2σ2

σ · 2n−1/2πn+1/2
.

(6)

Since almost all values of the normally distributed random
variable N(0, 1) fall within the range (−3, 3), then, due to
(4)-(6), the random variable xi is normally distributed inside
an ellipsoid with semi-axes 3σ1, 3σ2, ..., 3σn and center at
the point xi−1 (Fig.3).

If σ1 = σ2 = ... = σn = σ, then the mutation is called
isotropic. In our work, we use only this type of mutation.

The parameter σ is strategic, it determines the size and
distribution of points within the mutational 3σ-cloud and can
significantly affect the rate of evolution. σ is a compromise
parameter. With large values of σ for a simple test function,

Figure 3. 2D cloud simulation result for σ = 1

you can quickly get a point close to a solution, but it cannot
be improved further. For small σ the solution improves very
slowly but steadily. Thus, the value of σ must somehow
change during evolution in order to obtain the solution
of good precision. We assume that the good points of
the mutation cloud are the points that fall into the n-ball
R(0, |xi|) (see Fig.3).

To determine the optimal value of σ [?] proposed the 1/5-
th rule, which says that about 20% points of the mutational
3σ-cloud should be good, namely they are within the ball
R(0, |xi|). This value varies for various simple functions
considered earlier, and is close to 20% (hence the name
of the rule). For example, for a spherical function it is 27%
(see [?]). This value was not found for Weierstrass function,
so we will use the general rule. In [12], [21] there are
theoretical justifications of the 1/5-th rule for different ES.
Today, almost all ESs use some type of self-adaptation to
adjust the algorithm settings. In addition, Beyer and Deb
in [22] have shown that even ESs without explicit self-
adaptation can exhibit self-adaptive behavior.

The 1/5-th rule for Weierstrass function works only on
the first epochs, then, due to the complexity of the search
domain, the percentage of good mutations is usually quite
low, and the optimization parameter σ tends to decrease. We
used the following modification of this rule (Alg.2), which
gave a good result for our function. The value of ε here
can be thought of as a value related to the precision of the
method (but ε is not a precision).

Algorithm 2 The 1/5-th ε-rule

if the ratio of successful mutations to total mutations is
less than 1/5 then
σ := C · σ {The constant C = 0.817}
if σ < ε then
σ := σ0

end if
else
σ := σ

C
end if

Plots of adjustment of the strategic parameter σ and the
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Figure 4. Recombination operator

corresponding % of good mutation for different strategies
can be found in Section III.

3) Recombination
In evolution strategies ES (µ/ρ + λ) and ES (µ/ρ, λ),
presented for the first time in the work [6], in addition to
the mutation operator, a recombination operator is used to
form a new individual. Like a crossover operator in genetic
algorithms, the recombination operator uses information of
not one, but several (ρ) parents to form a child, but unlike
the crossover, only one child is formed ( [23], [24]). If a
number of parents is more than 2 (ρ > 2), then we speak
about multi-recombination.

The mechanism for selecting ρ individuals from the
parental population for recombination may differ. In our
work we use equiprobable and tournament selection.

In equiprobable selection, all individuals have the same
probability of being selected:

p(α1) = p(α2) = ... = p(αn) =
1

µ
. (7)

In tournament selection ( [19], [25]), the best individual
has a higher probability of being selected. Since in our work
we minimize the function and the minimum is reached at the
origin of coordinates, then the probability of being selected
for each parent individual is determined by the formula

p(αi) =

1
F (xi)+1∑µ
j=1

1
F (xj)+1

, p(α1) > p(α2) > ... > p(αµ).

(8)
Selected ρ parents αi, ..., αj form a child R(αi, ..., αj),

randomly passing it the values of their features, as shown in
Fig.4. Thus, the child-individual inherits the values of the
object parameters of its parents.

E. CONSIDERED EVOLUTION STRATEGIES
In this paper, we consider three types of evolution strategies,
whose algorithm schemes are shown in Fig.5, 6:

1) ES (1 + 1): 1 parent + 1 child (Fig.5(a));
2) ES (µ/ρ+λ): µ parents produce λ children (Fig.5(b));
3) Cross-Selection Method (α, π) + ES: α parents, ob-

tained as a result of some evolution strategy by
crossing, produce π ideal children (Fig.6). The Cross-
Selection Method is a new method proposed in our

Figure 5. Algorithm (a) ES (1+1), (b) ES (µ+λ) schemes
(P – parents, C – children)

Figure 6. Algorithm CS+ES (α, 1) scheme (EP – new
populations, CSP – Cross-Selection population)

work; it operates not with random generations, but
with generations obtained as a result of evolution. A
description of this method is in Section II-F.

1) Evolution Strategy (1 + 1)

In ES (1 + 1), a single child-individual is obtained by
mutating a single parent-individual, the best one is selected
from the two resulting individuals, which becomes the
parent (Fig.5(a)). Interestingly, the first implementations of
ES (1+1) were experimental and mutations were performed
physically, so considering a large number of children was
very laborious (see [?]).

2) Evolution Strategy (µ/ρ+ λ)

In ES (µ/ρ+λ) we deal with µ parents, from which, using
evolutionary operators, we form λ children (Fig.5(b)). Each
child has ρ parents. Then the best µ individuals become
parents of the next generation [6].

F. CROSS-SELECTION METHOD CS (α, π)

The idea of this method came to us, as well as all the
previous ones for our predecessors, from biology. The main
problem that we encountered for the ES algorithms is the
degeneration of the population, i.e. in other words, when
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all individuals in the population become sufficiently good
and close to each other. This is what happens in the world
around us, often isolated populations die out because they
stop improving.

When a breeder wants to grow a grade of plant with the
properties he wants, he takes several parent plants that carry
at least one desired property and crosses them in the hope
of getting those properties into offspring. This is the main
idea of the Cross-Selection Method.

In the Cross-Selection Method, we operate not with parent
individuals, but with parent populations.
Denote:
α – number of parent populations,
π – number of populations obtained as a result of Cross-
Selection.

In the first epoch, we form and improve by any ES α new
Evolution Populations (EP). As a result of evolution, each
population is the carrier of the properties we need. Next,
we take the best individual from each population for Cross-
Selection as a parent. In Sec.III-C we will show that the first
representative obtained as a result of the evolution of Cross-
Selection Population gives an excellent result. Thus we form
π Cross-Selection Populations. For each next epoch, we add
α−π new Evolution Populations to them. These populations
become the parent for the next Cross-Selection Population
(Alg.3).

III. RESULTS
In our work, we considere several ESs: ES (1 + 1) and ES
(10/3 + 20) with a fixed value of σ and with adaptation
of this value according to the 1/5-th rule and 1/5-th ε
rule (Alg.2), with equiprobable and tournament selection. In
the Sections III-A, III-B, III-C we will describe how these
strategies work with our test functions and show the results
of this work on the charts.

Evolution strategies refer to random methods. The results
obtained from several runs of the same strategy for the same
function may differ. Therefore, for all methods, we present
the averaged results obtained from 50 independent runs of
the program. This does not apply to plots for σ and % good
mutations, for which averaging does not make sense.

A. RESULTS OF ES (1 + 1)

In the ES (1 + 1) we have one parent, from which one
child is obtained by mutation. In our work, we use isotropic
mutation, for which the value of the strategic parameter σ
is the same for all control parameters. The value of σ can
be fixed (for simple ES) or changed during evolution (for
adaptive ES). Then, out of the two received individuals, the
best one is selected, which becomes the parent for the next
generation (Fig.5(a)).

The ES (1 + 1) is too weak for complex Ackley and
Weierstrass functions, but gives a good result for the simple
spherical function. Using this strategy as an example, we
were able to study the work of the ESs at different σ values
(Fig.7) and when adapting σ according to the 1/5-th rule

Algorithm 3 CS+ES (α, π)

e := 1 {1-st epoch}
for all i ∈ {1, ..., π} do

{Form i-th CS population}
for all j ∈ {1, ..., α} do

{The evolution of j-th random Population for j-th
parent}
P0
j := random Population

Pj := ES(P0
j )

S0
i [j] := Pj [1]

end for
Si := ES(S0

i ) {i-th ideal child}
end for
while not (Stop criteria) do
e := e+ 1 {e-th epoch}
for all i ∈ {1, ..., α} do

if i ≤ π then
S0[i] := Si[1] {Parents received as a result of
CS}

else
P0
i−π := random Population

Pi−π := ES(P0
i−π)

S0[i] := Pi−π[1] {Parents received as a result of
ES of a new random population}

end if
end for

end while
S := ES(S0) {ES for the Last CS Population}
Solution := S[1] {A solution is the best object of the last
CS population}

Figure 7. Work ES (1, 1) for various fixed σ

(Fig.8). In Fig.9 you can see the dependence between σ
value and % good mutation.

Based on our results, we can make the following conclu-
sions:

1) ES (1 + 1) produces a good global minimum search
result for simple functions with one local minimum
(Fig.7, Fig.8).

2) For different fixed values of σ the results are different
(Fig.7). The general trend is that for small values of
sigma (σ = 0.001) the method converges very slowly,
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Figure 8. Comparing the work of the best ES (1, 1) for a
fixed σ = 0.01 (Fmin ≈ 0.00037) and AES (1, 1) (Fmin ≈
3.2E − 11)

Figure 9. Adaptation of σ and % good mutation by 1/5-th
rule for spherical function

for large values of sigma (σ = 1) the solution quickly
stops to improve.

3) The result of AES (1 + 1) is better than ES (1 + 1)
with fixed σ (Fig.8).

4) When using AES (1 + 1) with adaptation according
to the 1/5-th rule, the value of σ has a pronounced
tendency to decrease (Fig.9).

B. RESULTS OF AES (10/3 + 20)

The second ES we consider is the Adaptive Evolution
strategy AES (10/3+20) with adaptation of σ by 1/5-th ε
rule. This strategy uses 10 parents to produce 20 children.
For each child by equiprobable or tournament selection
3 parents are selected. From these 3 parents, a child is
produced by random discrete recombination (Fig.4), which
is then subjected to mutation. Out of 30 parents and children,
the top 10 are selected to become the parents of the next
generation. The general scheme of the ES (µ+λ) algorithm
can be seen in Fig.5(b). This method produces excellent
results for the spherical function and not bad results for
the Ackley and Weierstrass functions. In the Fig.10, 11
we can see the results of these strategies. The AEST with
adaptation σ by 1/5-th ε = 10−6-rule and tournament
selection produced the best results for both functions.

Figure 10. Work of ES (10/3 + 20) with fixed σ = 0.01,
AES (10/3+20) and AEST (10/3+20) for Ackley function

Figure 11. Work of ES (10/3 + 20) with fixed σ = 0.1,
AES (10/3 + 20) and AEST (10/3 + 20) for Weierstrass
function

Figure 12. Adaptation of σ and % good mutation by 1/5-th
ε rule for Weierstrass function

In Fig. 12 we see the change of σ and the corresponding
% good mutation for Weierstrass function. We observe
especially large bursts of the % good mutations in the first
epochs, then there may be such bursts, but they are single.

Based on our results, we can make the following conclu-
sions:

1) AES (10/3 + 20) with adaptation σ by 1/5-th ε rule
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Table 1. Results of AEST(10/3 + 20) for 10 populations
after 1000 and 2000 generations for the Weierstrass function

x1 x2 ... x20 F1000(x) F2000(x)
1 0 0,0001 ... -0,0002 1,4577 1,4574
2 -0,0001 0 ... -0,0002 1,7953 1,7951
3 0 -0,0001 ... -0,0001 4,8579 4,8571
4 0,0001 -0,0028 ... -0,0001 2,5782 2,5779
5 0 0,0001 ... -0,0001 2,3010 2,2997
6 0 0 ... -0,0001 1,4271 1,4265
7 0,0001 0 ... -0,1192 4,9274 3,8675
8 -0,0023 0 ... 0 2,3961 2,3855
9 -0,0001 0,0001 ... 0 0,3037 0,3037
10 0 0 ... 0 3,3364 3,1524

gives excellent results in finding the global minimum
for a simple spherical function with one local min-
imum and a good result for complex Ackley and
Weierstrass functions (Fig.10, Fig.11).

2) Among ES (10/3+20) with fixed σ, AES (10/3+20)
with adaptation σ by 1/5-th ε rule and AEST (10/3+
20) with tournament selection, the third method gave
a significantly better result for both functions.

3) When σ is adapted by the 1/5-th ε rule, bursts of
% good mutations, especially in the first epochs of
evolution, are possible.

4) For almost all the considered strategies, there is no
qualitative improvement of the solution after the 100-
th generations.

As we can see, after the 100-th generation, the result
practically does not improve. What is the reason for such
stabilization, because the optimal result has not yet been
found? Tab.1 give us the answer to this question. Let’s an-
alyze the results recorded in it, obtained for the Weierstrass
function. This analysis led us to the Cross-Selection Method.

We took 10 separate populations and improved them
during the first 1000 and then 2000 generations. The results
of this evolution are partially shown in the table. Since we
know that the minimum of Weierstrass function Fmin =
F (0, 0, ..., 0) = 0, we see that the 1-st population has the
best value x1 = 0, the 2-nd one has the best value x2 = 0,
and the 8-th one has the best values x2 = 0 and x20 = 0. We
also see that each population has not very good properties.
Thus, we can consider that each population has fallen into
the trap of one of the local minima. The table also clearly
shows that the results for 1000 and 2000 epochs differ little.
What will produce us a qualitative improvement? We just
need to cross the individual obtained as a result of the
evolution of population 1 with the individual obtained as
a result of the evolution of population 2. If one of the
children gets the properties x1 = 0 from the first parent
and x2 = 0 from the second, then such a child will most
likely be significantly better than their parents. By crossing
good parents, we can get the perfect child. Our expectations
were fully justified, you can see the result in Sec. III-C.

Figure 13. Cross-Selection (10, 1) + Adaptive Evolution
Strategy (10/3 + 20) for 20D Weierstrass function

Figure 14. Adaptation of σ and % good mutation by 1/5 ε
rule for 20D Weierstrass function

C. RESULTS OF CS (10, 1) + AES (10/3 + 20)

As shown in Sec.III-B AES (10/3+20) produces a enough
good result. Our next task was to improve this result using
the Cross Selection Method. The main focus of this method
is not on evolutionary operators, on objective parameters,
but on parents. Each parent has already gone through the
process of evolution using one of the ES, i.e. he’s enough
good already. The general scheme of the algorithm can be
seen in Fig.6.

In our work with the Cross-Selection Method, we used
the Adaptive Evolution Strategy (10/3+ 20) for 1000 gen-
erations (Fig.13). We see a qualitative jump improvement
in the result by the first Cross-Selection and a little visible
jump improvement in the result by the second one. Also,
after each Cross-Selection, we see a % good mutation burst
(Fig.14) for the Weierstrass function.

Using the CS(10, 1)+AES(10/3 + 20) method for 20
dimensional Weierstrass function we obtained the following
result:

F2000(x) = F (0.0001, 0.0002, 0,−0.0001,−0.0002, 0, 0, 0,
0, 0, 0, 0, 0,−0.0002, 0, 0, 0,−0.0001, 0, 0) = 2.63 · 10−5.

And this result is certainly very good.
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Based on our results, we can make the following conclu-
sions:

1) With each Cross-Selection, we see a qualitative jump
in improving the result.

2) A large % of good mutations can be observed after
each Cross-Selection (1000, 2000 generation).

3) The number of generations for each cycle before
Cross-Selection can be determined by analyzing the
convergence of AES (in our case it should be more
than 100).

4) The CS+AES method can be used to find the global

IV. CONCLUSIONS
The our work proposed the Cross-Selection Method, which
together with Evolution Strategies, produced a very good
result for different test functions. As the most complex test
function that checks the capabilities of this method, we
took the 20D Weierstrass function. Since this function is
not smooth and has a huge number of local minima, the
vast majority of optimization methods cannot find its global
minimum. To solve this problem, we propose our method.

The Cross-Selection Method, like other Evolutionary
Algorithms, has a biological basis. We, like biologists-
breeders, take a few good individuals with the properties
we need and cross them with each other. Any Evolution
Strategy can be used to produce good parent -individuals.
As such a strategy, we used the Adaptive Evolution Strategy
(10/3 + 20), as a result of which we get parents with the
properties we need. Further, by crossing several parents,
each of which is good in some properties, we can get a child
who will take the good properties of each of his parents. This
allows you to move to a new search domain. By repeating
this procedure several times, we get into the domain of the
global minimum.

We believe that the Cross-Selection Method proposed by
us can be used for complex multidimensional continuous
functions with a large number of local optima, for which
other optimizational methods work ineffectively.
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