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 ABSTRACT Computer measurement systems play an important role on process automation and Industry 4.0 
implementation strategies. They can be easily integrated on modern production systems, enabling real time test and 
control of multiple product and process characteristics that need to be monitored. If for one side the big data provided 
by these systems is an important asset for production analytics and optimization, on the other hand, the high frequency 
data sampling, commonly used in these systems, can lead to autocorrelated data violating, this way, statistical 
independence requirements for statistical process control implementation. In this paper we present a simulation model, 
using digital recursive filters, to properly handle and deal with these issues. The model demonstrates how to eliminate 
the autocorrelation from data time series, creating and ensuring the conditions for statistical process control application 
through the application of real time control charts. A performance comparison between Shewhart of Residuals and 
Exponentially Weighted Moving Average (EWMA) of Individual Observations control charts is made for 
autocorrelated data time series with the presence of different mean shift amplitude perturbations. 
 

 KEYWORDS Autocorrelated time-series; ARIMA models; Digital Filters; Real Time; Simulation; Statistical Process 
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I. INTRODUCTION 

HE level of competitiveness experienced in modern 
factories are pushing even further the level of acuity and 

need for robust process control that ensure not only the quality 
of the end products but, simultaneously, the efficiency of the 
manufacturing processes. The Industry 4.0 [1] is a reflex of this 
environment where the digitalization and automation of 
manufacturing processes are part of the evolutionary path. If 
for one side the availability of the big data [2, 3] enables the 
possibility of information generation to scrutinize processes, 
improve product quality and process efficiency and ultimately 
improve competitiveness, on the other side the way data 
collection is made leads to another type of problem, the serial 
data autocorrelation [4]. Serial data autocorrelation can be 
found in many continuous and discrete manufacturing 
processes due to the high frequency data acquisition imposed 
by computer measurement systems and automated technology 
used for process sensing and measurement [5]. In consequence 
of that, modern manufacturing industries have changed the 
effectiveness of traditional statistical process control (SPC) 
techniques, namely when process data violates the requirement 
of statistical data independence. The high frequency data 
acquisition not only leads to autocorrelated data, thus violating 
the assumptions of statistical data independence, but also 

makes it difficult to provide the real time statistical 
information.  

Several authors have been suggesting methods to deal with 
autocorrelation, [6–9]. All of them propose the same strategy 
to eliminate the serial autocorrelation from process data, which 
includes the fitting of an appropriate time series model to the 
process observations, followed by the SPC application to the 
sequence of obtained residuals. Despite of the effectiveness of 
time series modeling to eliminate autocorrelation, the lack of 
recursiveness of these models makes them fail when real time 
data control is required. 

To properly handle these issues, an approach for real time 
process control is proposed. A simulation model was developed 
using the LabVIEW applying recursive digital filters, state 
space models and Z transform. Through the simulation model 
it is demonstrated how to extract serial data autocorrelation 
from process data using recursive digital filters, restoring, this 
way, the statistical data independence necessary for SPC 
application.  The simulation model developed implements the 
SPC through the implementation of real time processing 
control charts, such as Shewhart of residuals and EWMA of 
individual observations. A comparison of effectiveness to 
detect process perturbations between both control charts is 
presented.  

 

T
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II. THEORETICAL BACKGROUND 
This section presents a brief theoretical background used in the 
paper development and simulation model. 

A.  TIME SERIES MODELING 
To model the serial autocorrelated process, it’s proposed the 
use of difference equations [10] designated by autoregressive 
integrated moving average (ARIMA) models. An ARIMA 
model of (p,d,q) order for a process variable 𝑌  can be 
represented by 

 

∅(𝐵)∇ 𝑌 = 𝜃(𝐵)𝑎 , (1) 

 

where B is the backward shift operator defined as 𝐵 𝑌 =
𝑌 . ∅(𝐵) is the autoregressive (AR) operator of order p 
defined by ∅(𝐵) = 1 − ∑ ∅ 𝐵  and 𝜃(𝐵) is the moving 

average (MA) operator of order q defined by 𝜃(𝐵) = 1 −
∑ 𝜃 𝐵 ; where ∇= 𝑌 − 𝑌  defines the backward 

difference operator and ∇ = (1 − 𝐵)  and 𝑑  represents the 
order of differentiation. The process is said stationary for 𝑑 =
0 and nonstationary when 𝑑 ≥ 1; 𝑎  represents a white noise 
variable where 𝑎 ∼ 𝑁(0, 𝜎 ). Denoting the predicted value 
obtained from an appropriately fitted ARIMA model by 𝑌 , the 
residuals 𝑒 = 𝑌 − 𝑌   will behave like independent and 
identically distributed random variables. 

B.  THE Z TRANSFORM 
The 𝒵 transform is an analytical tool extremely useful in the 
analysis of discrete-time systems and computer modeling based 
on difference equations and transfer functions [11]). Taking 
𝑌(𝑡) as a quality characteristic of a certain manufacturing 
process, the 𝒵 transform of the discrete variable 𝑌  is given by 

 

𝒵[𝑌 ] = 𝑌[𝑍] = ∑ 𝑌 𝑍 , (2) 

 

where 𝒵 represents the transform operator and Z is the 
argument defined by a complex variable. On the other hand, the 
inverse 𝒵 transform of 𝑌(𝑍) is given by 

 

𝒵 [𝑌(𝑍)] = 𝑌  , (3) 

 

The proof of the equivalence between the 𝒵 transform and 
the back shift operator 𝐵 𝑌 = 𝑌  is presented in [12] as 
follows 

 

𝐸(𝑍) = 𝑎(𝑍)[𝑌 ] = 𝑍 ∑ 𝑌 . 𝑍 = 𝑍 𝑌(𝑍).  (4) 

 

As can be seen, the delay imposed by the backshift operator 
𝐵  to the variable 𝑌  in the time domain, corresponds, in the 𝒵 
domain, to multiplying the 𝒵 transform of the original function 
𝑌  by 𝑍 . 

C.  RECURSIVE DIGITAL FILTERS 
A digital filter 𝐻(𝑍) can be described as the implementation of 
an algorithm that computes a sequence of outputs 𝑌(𝑡) from a 

sequence of inputs 𝑎(𝑡). The most common classes of digital 
filters are the Finite Impulse Response (FIR), also called 
moving average (MA) or all-zero filters, and the Infinite 
Impulse Response (IIR). The IIR filters can be split in 
autoregressive (AR) or all-pole filters and autoregressive 
moving average (ARMA) filters, which have both poles and 
zeros. ARMA digital filters can be represented using the Z 
transform, [13, 14]. 

D.  ARIMA DIGITAL FILTERS 
ARMA digital filters can be represented by 𝒵 transform using 
the following transfer function [13, 14] 
  

𝐻(𝑍) =
( )

( )
=

∑ ( )

∑ (∅ )
. (5) 

 

In the previous equation, ∅  and 𝜃  are, respectively, the 
nth and mth order parameters of AR(p) and MA(q) processes, 
𝑌(𝑍) is the output variable and 𝑎(𝑍) is the input white noise 
stream. Therefore, the ARMA 𝐻(𝑍) digital filter will be of the 
form 

 

𝐻(𝑍) = 𝐻 (𝑍). 𝐻 (𝑍), (6) 

 

where the AR component of the digital filter H(z), called IIR, 
is given by 

 

𝐻 (𝑍) =
∑ (∅ )

, (7) 

 

and the MA component of the digital filter H(z), or FIR, will be 

  

𝐻 (𝑍) = ∑ (−𝜃 )𝑍 . (8) 

 

E. INVERSE DIGITAL FILETERS AND TIME SERIES 
MODELING 
Recursive digital filters can be used effectively for modeling 
serial autocorrelated processes. On the other hand, when 
appropriate inverse recursive digital filters are applied to the 
autocorrelated observations 𝑌 , the autocorrelation can be 
recursively removed and a sequence of normal and 
independently distributed errors 𝑒  are obtained enabling, this 
way, the application of real time SPC.  

Considering the difference equation of an ARMA process 
defined as 

 

𝑌 = ∅ 𝑌 + ⋯ + ∅ 𝑌 + 𝑎 −𝜃 𝑎 − ⋯ −𝜃 𝑎 , (9) 

 

the respective recursive digital filter will be defined as 

 

𝑌(𝑍) = ∑ ∅ 𝑍 𝑌(𝑍) + ∑ (−𝜃 )𝑍 𝑎(𝑍),  (10) 

 

with −𝜃 = 1. 
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Considering now the difference equation of one-step-ahead 
prediction of an ARMA process [11] such as 

 

𝑌 = ∅ 𝑌 + ⋯ + ∅ 𝑌 −𝜃 𝑎 −𝜃 𝑎 , (11) 

 

the inverse digital filter becomes  

 

𝑌(𝑍) = ∑ ∅ 𝑍 𝑌(𝑍) + ∑ (−𝜃 )𝑍 𝑎(𝑍). (12) 

 

The prediction error 𝐸(𝑍) is found through the difference 
between the observed value and the one-step-ahead forecast as 
follows 

𝐸(𝑍) = 𝑌(𝑍) − 𝑌(𝑍), (13) 

𝐸(𝑍) = ∅ 𝑍 𝑌(𝑍) + (−𝜃 )𝑍 𝑎(𝑍) 

− ∅ 𝑍 𝑌(𝑍) + (−𝜃 )𝑍 𝑎(𝑍)  

             = (−𝜃 )𝑎(𝑍) , (14) 

 

as −𝜃 = 1 then 

 

𝐸(𝑍) = 𝑎(𝑍). (15) 

 

The application of the inverse Z transform to (15) leads to 

 

𝒵 [𝐸(𝑍)] = 𝒵 [𝑎(𝑍)], (16) 

 

that is,  

𝑒 = 𝑎 . (17) 

 

F. ARIMA PROCESS REPRESENTED AS STATE-SPACE-
MODEL 
The space-state models (SSM) are based on recursive methods 
[15] and might be quite useful when recursive modeling and 
simulation of ARIMA processes are required. Due to their 
recursive properties, the SSM can be used in a real time 
applications once the model is updated each time a new 
observation becomes available. The SSM have been employed 
by several authors for simulation purposes [16, 17].  

According to [18], an ARMA (p,q) process can be 
represented by the following discrete state-space equations 

 

𝑋(𝑡 + 1) = [𝐴]𝑋(𝑡) + [𝐵]𝑎(𝑡)

𝑌(𝑡) = [𝐶]𝑋(𝑡) + [𝐷]𝑎(𝑡)        
,    𝑡 = 0,1,2, …,  (18) 

 

where [𝐴] is the state matrix of r x r dimension and ∅  are the 
appropriate coefficients of ∅(𝐵); [𝐵] defines an 1 x r vector 
containing the coefficients of 𝜃(𝐵) and [𝐶]  defines a r x 1 
vector of known constants; 𝑋(𝑡) is an r x 1 vector representing 
the state of process variables, 𝑎 ∼ 𝑁(0, 𝜎 )  is the white-noise, 

and [𝐷]  equals 0 or 1 depending on whether the process is or 
isn’t subject to an additional white-noise term respectively. In 
our case we assume D = 0. Finally,  1,max  qpr , 

where p and q represent, respectively, the order of the 
autoregressive  ∅(𝐵) and moving average 𝜃(𝐵) polynomials. 

SSM can also be used to represent ARIMA (p,d,q) 
processes [17]. For that the ∅ , ∅ , … , ∅   parameters must be 
replaced by the outcome parameters of the representation 
(1 − 𝐵) 𝜃(𝐵). The expanded transition and observation 
equations are defined respectively by (19) and (20). 

 

⎣
⎢
⎢
⎢
⎢
⎡

𝑥 (𝑡 + 1)

𝑥 (𝑡 + 1)

𝑥 (𝑡 + 1)
⋮

𝑥 (𝑡 + 1)

𝑥 (𝑡 + 1) ⎦
⎥
⎥
⎥
⎥
⎤

= 

=

⎣
⎢
⎢
⎢
⎢
⎡
∅       1      0     0 … 0
∅       0      1     0 … 0
∅       0      0     1 … 0
⋮         ⋮       ⋮      ⋮ ⋱  ⋮
∅  0      0     0 … 1
∅      0      0     0 … 0 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑥 (𝑡)

𝑥 (𝑡)

𝑥 (𝑡)
⋮

𝑥 (𝑡)

𝑥 (𝑡) ⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡

1
−𝜃
−𝜃

⋮
−𝜃

−𝜃 ⎦
⎥
⎥
⎥
⎥
⎤

𝑎(𝑡)  (19) 

𝑌(𝑡) = [1   0   0 …  0]

⎣
⎢
⎢
⎢
⎢
⎡

𝑥 (𝑡)

𝑥 (𝑡)

𝑥 (𝑡)
⋮

𝑥 (𝑡)

𝑥 (𝑡) ⎦
⎥
⎥
⎥
⎥
⎤

+ [𝐷]𝑎(𝑡).  (20) 

 
G. SPC STRATEGIES 
Traditional SPC [19] assumes that the observations a certain 
process characteristic 𝑌 , obtained by the sample of order t are 
defined by  
 

𝑌 = 𝜇 + 𝑎 , (21) 

                                                                                                                             

where 𝜇 defines the process mean and 𝑎  represents the white 
noise error, where 𝑎 ∼ 𝑁(0, 𝜎 ) 𝑎𝑛𝑑 𝐶𝑜𝑣 𝑎 , 𝑎 = 0 for 
any 𝑗 ≠ 0, meaning that the sequence of errors 𝑎  is statistically 
independent. This ensures that 𝑌  follow as iid process 
(independent and identically distributed), with  𝑌 ∼ 𝑁(𝜇, 𝜎 ) 
and 𝐶𝑜𝑣 𝑌 , 𝑌 = 0 for any for any 𝑗 ≠ 0. This is a 
fundamental requirement for SPC application. 

There is a close connection between control charts and 
hypothesis testing [19], null hypothesis against alternative 
hypothesis. Let´s assume that the 𝑡 sample of the process 
characteristic has an average of 𝑌 . If the value 𝑌  is bounded 
by the control limits (𝜇 ± 3𝜎 ) we accept null hypothesis 
(𝐻 : 𝜇 = 𝜇 ). Under these conditions the process mean 𝑌  is 
under control having only normal causes of variation.  If the 
value 𝑌  fall´s outside of the control limits (𝜇 ± 3𝜎 ) we reject 
null hypothesis (𝐻 : 𝜇 = 𝜇 ) and accept alternative hypothesis 
(𝐻 : 𝜇 ≠ 𝜇 ). These conditions highlight the present of special 
causes of variation on the process mean 𝑌 . 

The presence of serial autocorrelation has a negative effect 
on the SPC application effectiveness as decreases the ARL 



 Artur M.F. Graxinha et al. / International Journal of Computing, 22(2) 2023, 107-116 

110 VOLUME 22(2), 2023 

(Average Run length) [6, 7]. This increases the level 
occurrences of Type I statistical error. 

Some authors, [6–9] demonstrated the effect of serial 
autocorrelation and presented appropriated strategies to 
eliminate undesired autocorrelation effects on control charts.  

 
H. RESIDUALS CONTROL CHARTS 
One of the strategies followed was to model the autocorrelative 
structure applying the appropriated ARIMA model to the 
autocorrelated time series. When an appropriate ARIMA 
model is fitted to an autocorrelated data time series, a sequence 
of independent and identically distributed residuals 𝑒 = 𝑌 −
𝑌  is obtained. Once restored the iid conditions, the traditional 
Shewhart control charts can be applied to the residuals stream 
of data time series. These are called the residual control charts 
[19]. Therefore, whenever a shift in the mean occurs, 
highlighting the presence of a special cause of variation, it will 
be transferred to the residuals and detected by the control charts 
[6]. 

 
I. EWMA CONTROL CHARTS 
The suggestion to use control charts based on Exponentially 
Weighted Moving Averages (EWMA) was made for the first 
time in [21]. Since then, several authors have been published 
their developments on this subject, [20–26].    

The EWMA statistic [19] for a certain process characteristic 
𝑌 , obtained at order t, is defined by 
 

𝑍 = 𝜆𝑌 + (1 − 𝜆)𝑍 , (22) 

 
where t = 1, 2, …, and 0 < 𝜆 < 1 is the weighted constant 
working as a filter to evidence recent or past observation. If the 
𝑌  data time series are uncorrelated, the control limits for the 
EWMA control chart for individual observations can be 
defined by the Lower and Upper Control Limit respectively, 
LCL and UCL, [8, 19]. 
 

𝐿𝐶𝐿 = 𝑌 − 𝑘𝜎 [1 − (1 − 𝜆) ], (23) 

𝑈𝐶𝐿 = 𝑌 + 𝑘𝜎 [1 − (1 − 𝜆) ], (24) 

 
with k = 3. 

The EWMA can be used in situations where the data time 
series is autocorrelated, in specifically when the data follows a 
ARIMA (0,1,1) = IMA (1,1) process [8]. 

 

𝑌 = 𝑌 + 𝑎 − 𝜃 𝑎 . (25) 

 
According to these authors the EWMA with 𝜆 = 1 − 𝜃  is 

the optimal one-step-ahead forecast for these processes, where  
𝑌 = 𝑍  is the forecasted observation of instant t + 1 made at 
instant t. Therefore, we also have 𝑌 = 𝑍 . Using the above 
identities and replacing in (22) we have 

 

𝑌 = (1 − 𝜃 )𝑌 + 𝜃 𝑌 =  𝑌 − 𝜃 (𝑌 − 𝑌 ), (26) 

 
Also considering that 𝑎 = 𝑌 − 𝑌 , it becomes 

 

𝑌 = 𝑌 − 𝜃 𝑎 . (27) 

 
If one, consider the instant t then we can re-write (27) as 
 

𝑌 = 𝑌 − 𝜃 𝑎 . (28) 

 
Once 𝑌 = 𝑌 − 𝑎   we can finally have an equivalent 

equation to IMA (1,1) process in (25) 
 

𝑌 = 𝑌 + 𝑎 − 𝜃 𝑎 . (29) 

 
Under these circumstances, the one-step-ahead prediction 

errors 𝑎 = 𝑌 − 𝑌 , are independent and identically distributed 
with zero mean and standard deviation 𝜎 . Control charts with 
control limits at ±3𝜎  can be applied to these one-step-ahead 
prediction errors. 

According to [8], the EWMA can produce excellent one-
step-ahead prediction for other ARIMA processes, if the 
observations are positively correlated, and the process mean 
does not drift too quickly. 

Autocorrelated data requires a different approach for 
selecting  𝜆 to achieve a certain average run length, when 
compared with uncorrelated data. The authors [19, 27] 
proposed a method to select 𝜆  based on the minimization of 
the sum of squares of the one-step-ahead prediction errors 
(SSE). According to these authors, the estimate of the variance 
of one-step-ahead errors 𝜎  can be calculated by the quotient 
between the sum of squares of prediction errors for the optimal 
𝜆 and the 𝑛 observations used for its determination. This 
method can be easily implemented in computer time series 
analysis. 
 

𝜎 ≅ . (30) 

 

III. SIMULATION MODEL  
The Real Time simulation model presented in this work 
(Figure 1) was developed in LabVIEW, a system engineering 
graphical programing language widely used in virtual 
instrumentation and computer measurement applications. This 
simulation model can simulate any ARIMA process using the 
SSM approach from a white noise 𝑁(0,1) base line. This way 
once created the desired autocorrelation data structure, it is also 
possible to eliminate the autocorrelation using digital recursive 
filters (FIR and IRR), reconverting the data into i.i.d. residuals. 
The model explores the application of individual observations 
control charts to the residuals and proper set of EWMA charts 
to autocorrelated data time series. The mean shifts, simulated 
through a step degree function, enable the evaluation of the two 
types of charts for different process perturbation amplitude 
shifts imposed at instant t = 2s. The sum of squares errors (SSE) 
algorithm was also implemented to support the selection of the 
optimum  𝜆 to be used in the EWMA statistics. 
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Figure 1. LabVIEW Simulation model for real time SPC. 

A. SIMULATION CASES 
This work explores the simulation of two practical examples of 
ARIMA processes, an AR (1) and an ARMA (1,1). 

 

CASE 1 – AR (1), first order autoregressive model with ∅ =
0.8 is defined by  

 

𝑌 = 𝑎 +  0.8𝑌 , (31) 

 

and it has the following SSM representation 

 

𝑥 (𝑡 + 1)

𝑥 (𝑡 + 1)
=

0.8   1
0      0

𝑥 (𝑡)

𝑥 (𝑡)
+

1
0

𝑎 , (32) 

 

𝑦(𝑡) = [1   0]
𝑥 (𝑡)

𝑥 (𝑡)
. (33) 

 
CASE 2 – ARMA (1,1), autoregressive moving average model 
with parameters  ∅ = 0.8 and 𝜃 = 0.3  can be written by 

 

𝑌 =  0.8𝑌 + 𝑎 − 0.3𝑎 , (34) 

 

with the following SSM representation, 

 

𝑥 (𝑡 + 1)

𝑥 (𝑡 + 1)
=

0.8   1
0      0

𝑥 (𝑡)

𝑥 (𝑡)
+

1
−0.3

𝑎 , (35) 

 

𝑦(𝑡) = [1   0]
𝑥 (𝑡)

𝑥 (𝑡)
. (36) 

 
In both cases the LabVIEW simulation model was properly 

configured with parameters of (32), (33), (35) and (36). The 
FIR and IIR digital filters were setup with the appropriated 
values to enable the autocorrelation elimination. Figure 2 and 
Figure 3 represents, respectively, the control chart for 
individual observations for the autocorrelated data time series 
Y(t) (blue line) and for the residuals e(t) (green line) for case 1 
and case 2. As we can observe by the number of points from 
the autocorrelated time series Y(t) falling outside of control 
limits (UCL, LCL), the Type I statistical errors are significantly 
high on this case in comparison with the residuals e(t).   

The parameter 𝜆 of the EWMA control charts was selected, 
in both cases, using the minimum sum of square errors (SSE) 
of a(t), obtained from the one-step-ahead prediction errors 𝑎 =
𝑌 − 𝑌 , according to (28) and (29). Figure 4 and Figure 5 
illustrate the SSE function of the 𝜆 for AR (1) and ARMA (1,1) 
cases, respectively. As it can be observed the values of 𝜆 that 
minimizes the SSE on the AR (1) data time series is  𝜆 = 0.7 
while on ARMA (1,1) process is 𝜆 = 0.45. 

Figure 6 and Figure 7 shows, respectively, the one-step-
ahead EWMA forecast for the AR (1) and ARMA (1,1) 
autocorrelated data time series Y(t) using the 𝜆 values obtained 
in each case.  
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Figure 2. Individual control chart for autocorrelated data time series Y(t) and residuals e(t) of AR(1) model. 

 
Figure 3. Individual control chart for autocorrelated data time series Y(t) and residuals e(t) of ARMA (1,1) model. 

 
Figure 4. Sum of Square Errors of one-step-ahead prediction 

errors 𝑎 = 𝑌 − 𝑌  from AR (1) model. 
 

 
Figure 5. Sum of Square Errors of one-step-ahead prediction 

errors 𝑎 = 𝑌 − 𝑌  from ARMA (1,1) model. 

 

 
Figure 6. Autocorrelated data time series Y(t) and one-step-ahead prediction EWMA Z(t) for AR (1) process. 

 

 
Figure 7. Autocorrelated data time series Y(t) and one-step-ahead prediction EWMA Z(t) for ARMA (1,1) process.  
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The standard deviation of one-step-ahead error 𝜎 , required 

to setup the control limits of the EWMA control chart was 
computed in real time, applying the square root to (30).  
With autocorrelation eliminated from data time series and with 
the appropriated setting of the EWMA it was possible to run 
several simulations to establish a comparison between the 
effectiveness in detecting mean shifts of the residuals of 
individual observations control chart and EWMA control chart. 
The comparison between these two types of control charts was 
made for the following mean shifts, 0.25, 0.5, 0.75, 1.0, 1.25 
and 1.5 units of standard deviation. The mean shifts were 
imposed to the model at instant t = 2s using the step function. 
For easy comparison the data set of random generated data 
series was common for all the simulations executed. For 
simulation propose the time duration of each simulation is 10 
seconds at a rate of 100 samples per second. 
 
IV. DISCUSSION RESULTS  
The data in Table 1 summarizes the results obtained during the 
simulations with the use of EWMA and Individual Observation 
of Residuals Control Charts for both processes, AR (1) and 
ARMA (1,1), for all the mean shifts. As expected, the EWMA 
Control Chart is more effective detecting small mean shifts in 
comparison with the Individual Observation of Residuals 
Control Chart for any of the processes AR (1) and ARMA (1,1) 
considered in the experience. Not only the detection is made 
earlier with the EWMA Control Chart, but it also provides,  

consistently, more points out of control limits after the mean 
shift perturbation. For a small mean shift of 0.25 the Individual 
Observation of Residuals Control Chart is not able to detect the 
perturbation, while the EWMA Control Chart detects the first 
point out of control limits at instant t = 3.38s and t = 4.01s 
respectively, for AR (1) and ARMA (1,1) processes. The 
effectiveness of the Residual Control Chart detecting the first 
point out of control improves with the increment of the mean 
shifts. Even though for mean shifts equal or bigger than 0.75 
the Residuals and EWMA Control Charts shown a similar 
capability in detecting the first point out of control, EWMA 
shown more consistence in detecting points out of control after 
the mean shift.  

While for the selected AR (1) and ARMA (1,1) processes 
the Residual Control Chart doesn’t show differences in it 
performance as the residual series e(t) will be equal in both 
processes after autocorrelation filtering, the EWMA seams to 
react a bit slowly to the mean shifts on ARMA (1,1) in 
comparison with AR (1) process. Regarding the number of 
points out of control, the EWMA Control Chart show a good 
consistence on AR (1) and ARMA (1,1) processes, although the 
number of out-of-control points is bigger in the AR (1). Also, 
we can observe that EWMA tend to react more quickly in 
detecting points out of control as mean shifts perturbation 
amplitude increases. 
 

 

TABLE 1. Summary of Simulation Results 

 
 

Figure 8 and Figure 9 show simulated EWMA and Residual 
Control Charts for the AR (1) process with mean shift of 0.25, 
respectively. As referred, the Residual Control Chart is not able 
to perform any detection of points out of control after the 
perturbation at t = 2s, while EWMA Control Chart get the first 
point out of control at t = 3.38s.  

The EWMA and Residual Control Charts for the AR (1) 
process with mean shift of 1 are shown on Figure 10 and 
Figure 11, respectively. As it can be seen and as per table 1, the 
detection of the mean shift in these two cases is made 

immediately after the mean shift perturbation. Note as EWMA 
reaction time to mean shift perturbation increased with shift 
amplitude (Figure 8, Figure 10). 

In Figure 12 and Figure 13 is shown the EWMA and 
Residual Control Charts for the ARMA (1,1) process with 
mean shift of 1.25, respectively. As observed, even though the 
ability of the Residual Control Chart to detect the mean shift at 
the same approximate time instant of the EWMA Control 
Chart, this one has consistently more points out of control 
outside the control limits after the perturbation. 

 

Deviation Residuals EWMA Residuals EWMA Residuals EWMA Residuals EWMA
0,25 ND 3,38 s 0 25 ND 4,01 s 0 2
0,5 3,95 s 2,19 s 3 106 3,95 s 3,38 s 3 33
0,75 2,18 s 2,19 s 10 300 2,18 s 2,19 s 10 134

1 2,18 s 2,16 s 18 550 2,18 s 2,19 s 18 356
1,25 2,18 s 2,16 s 31 693 2,18 s 2,17 s 31 585
1,5 2,18 s 2,15 s 52 774 2,18 s 2,16 s 52 721

OCL_Detection (s) - Out of control Limits Detection in seconds ND - No Detection

# Points OC - Number of points out of control in time series

# Points OC
ARMA(1,1)

OCL_Detection (s) OCL_Detection (s)# Points OC
AR(1)
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Figure 8. EWMA Control Chart for AR (1) process with mean shift amplitude of 0.25. 
 

 
Figure 9. Residual of Individual Observations Control Chart for AR (1) process with mean shift amplitude of 0.25. 

 
Figure 10. EWMA Control Chart for AR (1) process with mean shift amplitude of 1. 

 
Figure 11. Residual of Individual Observations Control Chart for AR (1) process with mean shift amplitude of 1. 

 
Figure 12. EWMA Control Chart for ARMA (1,1) process with mean shift amplitude of 1.25. 
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Figure 13. Residual of Individual Observations Control Chart for ARMA (1,1) process with mean shift amplitude of 1.25. 

 
V. CONCLUSIONS  
A simulation model was developed to illustrate an approach for 
dealing with real time statistical process control with the 
presence of time series data autocorrelation very often found in 
technological advanced industrial environments. The model 
enables the generation of any ARIMA process. In this paper 
two autocorrelated processes were evaluated, a first order 
autoregressive AR (1) and a first order autoregressive moving 
average ARMA (1,1). The results show that appropriate digital 
recursive filters could be effectively used to remove 
autocorrelation in a real time environment enabling, that way, 
further application of statistical process control without 
violating the principle of statistical independence. Though the 
application of different mean shift amplitude perturbations, 
imposed at a preset time to each one of the autocorrelated 
processes, we evaluated the effectiveness of the application of 
both, Residuals of Individual Observations and EWMA control 
charts. This evaluation of performance consisted in the 
comparison of the time response achieved with the two control 
charts after the mean shift perturbation has been imposed to the 
time series data and by the consistence of points out of control 
after the occurrence of this perturbation. The results obtained 
are in line with theoretical expectations. For small amplitude 
mean shifts EWMA control chart shown a quicker time 
reaction to perturbation, exposing consistently points out of 
control limits after that point. Residuals Individual Observation 
control charts tend to improve reaction time to mean shift 
perturbations as its amplitude increases. They show similar 
time responses to EWMA for bigger amplitude mean shifts, in 
spite its consistence exposing points out of control is much 
smaller in comparison with EWMA control charts. 
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