

170 VOLUME 22(2), 2023

Date of publication JUN-30, 2023y, date of current version JUN-01, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.2.3086

OntoChatGPT Information System:
Ontology-Driven Structured Prompts for

ChatGPT Meta-Learning
OLEKSANDR PALAGIN1, VLADISLAV KAVERINSKY2, ANNA LITVIN1, KYRYLO MALAKHOV1

1Microprocessor technology lab, Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Department of Wear-Resistant and Corrosion-Resistant Powder Construction Materials, Frantsevic Institute for Problems in Material Science of the

National Academy of Sciences of Ukraine, Kyiv, Ukraine

Corresponding author: Oleksandr Palagin (e-mail: palagin_a@ukr.net).

This work was supported by the National Research Foundation of Ukraine under grant agreement – “Development of the cloud-based platform
for patient-centered telerehabilitation of oncology patients with mathematical-related modeling”, application ID: 2021.01/0136.

 ABSTRACT This research presents a comprehensive methodology for utilizing an ontology-driven structured
prompts system in interplay with ChatGPT, a widely used large language model (LLM). The study develops formal
models, both information and functional, and establishes the methodological foundations for integrating ontology-
driven prompts with ChatGPT’s meta-learning capabilities. The resulting productive triad comprises the
methodological foundations, advanced information technology, and the OntoChatGPT system, which collectively
enhance the effectiveness and performance of chatbot systems. The implementation of this technology is demonstrated
using the Ukrainian language within the domain of rehabilitation. By applying the proposed methodology, the
OntoChatGPT system effectively extracts entities from contexts, classifies them, and generates relevant responses. The
study highlights the versatility of the methodology, emphasizing its applicability not only to ChatGPT but also to other
chatbot systems based on LLMs, such as Google’s Bard utilizing the PaLM 2 LLM. The underlying principles of meta-
learning, structured prompts, and ontology-driven information retrieval form the core of the proposed methodology,
enabling their adaptation and utilization in various LLM-based systems. This versatile approach opens up new
possibilities for NLP and dialogue systems, empowering developers to enhance the performance and functionality of
chatbot systems across different domains and languages.

 KEYWORDS ontology engineering; prompt engineering; prompt-based learning; meta-learning; ChatGPT;
OntoChatGPT; chatbot; transdisciplinary research; ontology-driven information system; composite service.

I. INTRODUCTION
utomatic dialogue systems have been developed for
several decades, ever since the advent of computers with

user interfaces. The concept of utilizing natural language for
human-machine interaction has always been highly desirable.
It offers convenience and ease compared to the need to learn a
specific language and follow predefined instructions. The
introduction of textual interfaces, followed by windows and
menu-based interfaces, marked a significant breakthrough,
making computers accessible and widely used tools for various
users.

However, despite their practicality and convenience, these
interfaces still lack the necessary flexibility. They are often
characterized by rigid predetermined structures and can
become complex and intricate. Consequently, users are
required to invest significant time and effort in familiarizing
themselves with all the features of such interfaces. It would be
ideal if users could simply express their desired actions or

requested information in a natural language, either through
speech or typing, thereby eliminating the need for extensive
interface exploration.

By incorporating natural language understanding and
processing capabilities into dialogue systems, users would
benefit from a more intuitive and user-friendly interaction. This
advancement would enhance the efficiency and usability of
these systems, ensuring a smoother user experience and
reducing the learning curve typically associated with complex
interfaces.

Currently, there exists a range of virtual assistants that
employ natural language processing both in written and spoken
form. Prominent examples include AI systems like Apple Siri,
Google Assistant, Amazon Alexa and Microsoft Cortana,
among others. However, the development of ChatGPT (which
is based upon OpenAI’s GPT-3, GPT-3.5 and GPT-4
foundational GPT models [1], and has been fine-tuned for
conversational applications using both supervised and

A

Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

VOLUME 22(2), 2023 171

reinforcement learning techniques) [2]–[4] has marked a
significant breakthrough in the field of artificial intelligence,
particularly in the domains of natural language processing
(NLP) and understanding (NLU). The “GPT” stands for
generative pre-trained transformer – a type of large language
model (LLM). ChatGPT is a purely textual system and lacks
the ability to recognize and generate oral speech or interact with
physical objects in the material world. Nevertheless, its
potential as a powerful natural language system is vast, offering
a wide range of capabilities for information provision,
generation, and structuring. Various program features and
tricks can be accomplished using ChatGPT.

Consequently, ChatGPT not only serves as a valuable
standalone virtual assistant and companion but also holds great
potential for integration into other software systems, leveraging
its abilities to fulfill specific purposes. This perspective has
opened up new avenues for research, particularly in exploring
how ChatGPT can be harnessed to serve determined goals
required for system activities.

Researchers now have the opportunity to delve into
investigating methods to effectively utilize and optimize
ChatGPT’s capabilities within specific domains. This includes
adapting and customizing ChatGPT to perform tasks and
address challenges tailored to the unique requirements of
different software systems. By effectively “taming” ChatGPT,
researchers can harness its strengths and align it with the
specific objectives of various applications, leading to further
advancements in the field of natural language processing and
expanding the boundaries of what can be achieved through
intelligent information systems.

The aim of the research discussed in this paper is to
establish formal models (both information and functional), and
to develop methodological foundations for utilizing an
ontology-driven structured prompts system in interplay with
ChatGPT. The system developed in this research is called
OntoChatGPT. This system enables the provision of
information and inference (according to the definition given in
“The explanatory ontograph dictionary for knowledge
engineering”1 – expanding the knowledge base by deriving new
information from existing knowledge units; this process
includes various operations, with logical deduction being a
notable case) based on a specific set of contexts, functioning as
a dialogue system. Logical deduction involves inferring new
information based on established facts, rules, and logical
principles. It enables the system to draw logical conclusions
and make connections between different pieces of information.
By employing deductive reasoning, the system can extend its
understanding and generate additional knowledge units that
were not explicitly provided. This process of obtaining new
information units from previously known ones plays a crucial
role in enhancing the system's knowledge and improving its
overall functionality. It enables the system to make intelligent
inferences, uncover hidden relationships, and provide more
comprehensive and valuable insights to the user.

The implementation of this technology is demonstrated
using the Ukrainian language and applied within the domain of
rehabilitation (specifically e-rehabilitation [5]).

By developing formal models, this research provides a
structured framework for organizing and representing
knowledge in a systematic manner. These models,
encompassing both information and functional aspects, lay the

1 https://www.dropbox.com/s/kg4w2rfluij3tuy/expl-onto-dict-ke.pdf?dl=0

foundation for effectively integrating an ontology-driven
approach with ChatGPT. The combined OntoChatGPT system
enables sophisticated dialogue interactions that incorporate
inference and leverage contextual information to provide
meaningful responses.

Furthermore, this research focuses on the practical
application of the developed technology within the field of
rehabilitation. By implementing and testing the OntoChatGPT
system using the Ukrainian language, the study demonstrates
the potential and versatility of the approach. Specifically, it
showcases how the ontology-driven structured prompts system,
in conjunction with ChatGPT, can enhance information
provision and inference in the context of rehabilitation-related
discussions.

This work not only contributes to the advancement of
dialogue systems and natural language processing but also
demonstrates the applicability and relevance of the proposed
methodology within a specific domain. The findings offer
valuable insights into the potential benefits of integrating
ontology-driven structured prompts systems with state-of-the-
art language models, paving the way for further developments
and applications in the field of intelligent information systems
and knowledge technologies.

II. RELATED WORK
The ChatGPT does not have a conventional API that consists
of a fixed number of URLs and corresponding commands with
predetermined actions. However, it does have an API that
accepts natural language commands [6]. Nonetheless, there are
certain peculiarities associated with this approach. Firstly,
while ChatGPT possesses knowledge across a wide range of
languages, its understanding and proficiency levels in each
language may vary. English serves as the primary language for
ChatGPT, and commands and instructions should be written in
English, even when dealing with other languages.

Another crucial aspect is that instructions provided to
ChatGPT need to be well-structured, clear, and precise. Due to
the limitation on the number of tokens that can be processed by
ChatGPT, instructions should be concise yet informative.
Experimental evidence with ChatGPT [7]–[10] has revealed
that one effective approach for delivering concise yet
comprehensive commands and instructions is by formatting
them as JSON.

By structuring instructions in JSON format, researchers and
developers can ensure that the information is organized, easily
interpretable, and maximally efficient for ChatGPT. This
approach enables clear communication of the desired actions
and expectations to the system, optimizing the interaction
between users and ChatGPT.

Furthermore, it is essential to strike a balance between
brevity and clarity in the instructions provided to ChatGPT.
While instructions should be concise to accommodate token
limitations, they must also convey sufficient information to
instruct ChatGPT accurately. Achieving this balance ensures
that the system’s responses align with the user's intentions and
expectations.

Despite the absence of a traditional API, ChatGPT offers an
API that accepts natural language commands. Adhering to
English as the main language, structuring instructions in a clear
and precise manner, and leveraging JSON formatting for
concise yet comprehensive commands are key considerations

 Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

172 VOLUME 22(2), 2023

for effectively utilizing ChatGPT’s capabilities. These
strategies enhance the interaction between users and the
system, facilitating more accurate and meaningful responses,
compared with chain-of-thought reasoning technique [9], [11]–
[14].

In public GitHub repository “Mr. Ranedeer: Your
personalized AI Tutor!” [7], an example of an instruction set
aimed at transforming ChatGPT into a virtual tutor can be
found. These instructions are formatted as nested dictionaries,
with concise key terms representing the main concepts of the
intended purpose. The values associated with these keys can be
dictionaries, providing further details, or natural language
(English) phrases offering comprehensive and clear
explanations.

To utilize this virtual tutor functionality, one can simply
copy and paste the provided instruction into the ChatGPT
interface. By doing so, ChatGPT can be adapted to serve as a
virtual tutor across various subject areas covered in its
knowledge base. The concept of using structured prompts to
instruct ChatGPT’s behavior in a desired manner is both
tempting and promising.

Furthermore, ChatGPT has the capability to incorporate
plugins stored in external resources [15]–[17]. Links to these
resources can also be included in the instructions, thereby
expanding the range of functionalities and possibilities. This
opens up new avenues of research, referred to as prompt
engineering and meta-learning. Recent studies [11], [13], [18]–
[20] highlight the significance and relevance of exploring these
areas.

The main objective of prompt engineering is to address the
challenge of guiding ChatGPT towards appropriate responses,
particularly in tasks requiring logical derivations. Instructions
can be crafted to clarify the task's intricacies and break it down
into sequential steps, guiding the AI towards the desired
outcome. Prompt engineering is akin to an art form, involving
the careful selection of specific words, phrase structures, and
their order to elicit the desired AI behavior. Various strategies
have been developed, including the use of imperatives to define
the AI's role, planned sequences, structured data formats (such
as JSON, XML, YAML), self-critique chains, and others.

Determining the most effective strategy for prompt
engineering remains an open question, but promising
approaches have been reported in [10], [21]. This work
emphasizes the importance of prompt phrase structure and the
utilization of specific words and expressions. Combining the
findings from this study with other relevant research can yield
valuable insights and contribute to advancing the field.

Prompt engineering opens up possibilities for providing
targeted and specific learning to ChatGPT, enabling it to gain a
deeper understanding of subjects it may not have sufficient
knowledge about. While mechanisms like model training and
fine-tuning exist in ChatGPT, they can be costly and require
large, carefully curated datasets. In some cases, it may not be
feasible or practical to follow this approach. Instead, valuable
information can be conveyed in textual form or through data
structures combined with JSON prompts that instruct ChatGPT
algorithms on how to process the provided data. This allows for
the expansion of ChatGPT’s knowledge and capabilities,
making it suitable for dialogue systems or even control
systems.

While employing a rigid structure like the one described in
[22] may be a functional approach, there is room for further
development and exploration. Systems that interact with

ChatGPT can utilize a variety of instructions or templates
tailored for different purposes. The prompts themselves can be
made more flexible by incorporating optional fields and
providing different explanations (values) for each field. Such a
system should include instructions on when and how to use the
templates with ChatGPT and what specific values should be
used in different cases. These instructions for creating and
utilizing structured prompts in ChatGPT can be organized
within an ontology, resulting in an ontology-driven system.

The utilization of ontologies, or meta-ontologies, as a
repository of system behavior rules is discussed in [21], albeit
without direct reference to chat ChatGPT or similar
applications. In this approach, the ontology serves as a
decision-making module, guiding the system on how to handle
specific data types and represent them in the user interface.

By incorporating ontologies to instruct the behavior of
ChatGPT and leveraging structured prompts, we can develop a
powerful ontology-driven system. This system enhances
ChatGPT’s ability to adapt and learn in specific domains,
leveraging the flexibility of prompts, and benefiting from the
knowledge stored within the ontology. The combination of
prompt engineering, ontology utilization, and ChatGPT-based
chat systems holds great potential for advancing intelligent
information systems and knowledge technologies in various
domains.

The foundational concepts of information systems with an
ontology-driven architecture are extensively discussed in [23],
[24]. In “The explanatory ontograph dictionary for knowledge
engineering”, ontology-driven architecture – is defined as a
system architecture that revolves around two main
components: an “Active” computer ontology and a “Problem
Solver”. These components work collaboratively to govern the
information processing process, with a specific focus on
addressing practical user problems and supporting targeted
activities. Furthermore, an ontology-driven information system
is characterized as a comprehensive system comprising several
key elements. These include a knowledge base that is
intricately linked to ontologies (typically represented as a finite
collection of systematically integrated knowledge bases within
specific subject domains), an inference engine, an application
processing subsystem, and interfaces (UI, API) for user
interaction and/or external environment integration.
Collectively, these components facilitate the effective usage of
ontological knowledge within the information system.

The approach we are adopting in this work is distinct from
the methodology employed in our previous researches [25],
[26]. In our previous works, the ontology served as the primary
repository for information within the dialogue system, rather
than as a container for rules, which were organized using a
different approach. Nonetheless, certain elements from those
previous developments are still applicable to our current
endeavor. For example, techniques such as named entity
extraction, linked context analysis, and the automatic
generation of formal SPARQL [27] queries from user-provided
natural language phrases are utilized. Addressing these
challenges is crucial and inevitable in the development of such
systems [28]–[30]. However, they fall outside the scope of the
present work.

In our previous studies [25], [26], we focused on utilizing
the ontology as a central storage for the information exchanged
within the dialogue system. In contrast, the current work
explores the utilization of the ontology as a framework for
defining rules and guiding the behavior of the system. Despite

Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

VOLUME 22(2), 2023 173

this shift in approach, certain aspects of our previous
developments remain relevant. Specifically, techniques such as
named entity extraction, linked context analysis, and the
automatic generation of formal SPARQL queries from user-
provided natural language phrases have proven valuable and
are also incorporated into the current work.

However, it is important to note that the challenges
associated with these techniques, such as ensuring accurate
entity extraction and generating precise SPARQL queries, are
complex and require dedicated research efforts [28]–[30].
While these topics are critical for system development, they lie
beyond the scope of the present study.

In summary, while our previous works [25], [26] employed
ontology as a primary information repository within the
dialogue system, the present work utilizes the ontology as a
means of defining rules. Despite this shift, certain techniques
from our earlier research, including named entity extraction,
linked context analysis, and SPARQL query generation,
continue to be relevant. However, addressing the challenges
associated with these techniques remains an ongoing focus of
research, which extends beyond the scope of the current study.

III. FORMAL MODELS

A. INFORMATION MODEL OF THREE-TUPLE
COMPOSITE SERVICE – OntoChatGPT INFORMATION
SYSTEM
The OntoChatGPT information system utilizes an information
model based on a three-tuple composite service. This
information model forms the foundation of OntoChatGPT’s
functionality and allows for the integration of diverse services
within the system.

The OntoChatGPT information system is represented as a
three-tuple composite service (CS) using the revised
formalisms given in [31], [32]:

, ,OntoChatGPT nevkit u c nvCS D F E (1)

where:

,

, 1, , 1,evkit w d
k l

D ws as w k d l

 – is a

comprehensive set of web services and application software
available for developers which and enables the development of
various applications and services within the system –
OntoChatGPT development kit. denotes a set of nonnegative
integer numbers.

The formalization of the web service, denoted as ws , is an

extension of the Service formalism introduced in [33]. This
specialized representation incorporates additional properties,

namely readm , readh and estr , which enhance the descriptive

power and characteristics of the formal model:

 , , , , , , ,re ff nput utput rovider aller esc estws p e i o p c d r (2)

where:

allerc – caller is the consumer or user of the web service.

rep – in the context of web services ws , preconditions

refer to the conditions that must be satisfied before a web

service can be consumed. They define the prerequisites that

need to be met by the caller allerc before invoking the service.

ffe – effects represent the conditions or changes in the

world that can be expected to be true after the web service ws
has been executed. They indicate the outcomes or results of

performing the service. Within the preconditions rep and

effects ffe framework, there are special subclasses known as

input nputi and output utputo .

nputi – input conditions correspond to preconditions rep ,

specifying the necessary input data or parameters required by
the web service ws .

utputo – output conditions, on the other hand, align with

effects ffe , denoting the expected output or outcomes

produced by the web service ws .

roviderp – is the provider entity responsible for offering the

web service ws .

 ,esc read readd m h – is a description of the particular

web service ws is provided in both machine-readable readm

and human-readable readh formats. This description, known as

escd , serves as a resource accessible to the caller allerc ,

providing information about the web service ws and its
functionality.

Additionally, the creation of web services ws adheres to a

set of constraints estr , influenced by the RESTful architectural

style as outlined in [34]. These constraints include:
 Client/Server: This constraint emphasizes the separation

of concerns by adopting a client-server architecture. It
allows for independent evolution of different
components, enabling the client's user interface to
evolve separately from the server and promoting
simplicity in the server's design.

 Stateless: The client-server interaction is designed to be
stateless, meaning that the server does not store any
client-specific context. Instead, the client maintains any
necessary session information, ensuring that each
request can be treated independently.

 Cacheable: Data within a response can be labeled as
cacheable or non-cacheable. If a response is cacheable,
the client or intermediary can reuse it for similar future
requests, reducing the need for redundant interactions
with the server.

 Uniform Interface: The uniform interface constraint
ensures that there is a consistent and standardized
interface between components. This uniformity
facilitates interoperability and allows clients, servers,
and network-based intermediaries to depend on the
predictability of the interface's behavior.

 Layered System: Components are organized into
hierarchical layers, where each component is only
aware of the layer with which it directly interacts. This
layered approach promotes modularity and scalability,
as components can operate within their designated
layers without requiring knowledge of other layers.

 Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

174 VOLUME 22(2), 2023

 Code on Demand: This constraint is optional and
provides support for extending client functionality
through the downloading and execution of scripts.
Clients can dynamically enhance their capabilities by
acquiring and running code components from the
server.

By adhering to these constraints, the RESTful architectural
style offers a framework for creating web services that are
modular, scalable, stateless, cacheable, and exhibit a uniform
interface.

The formalization of application software as ,
encompassing both desktop applications and utilities that
feature graphical or command-line user interfaces, can be
considered a specialization within the broader Service
formalism discussed in [33]. In this specialized context, an

additional property escd is introduced, denoted by the human-

readable readh description of the particular desktop

application:

 , , , , , ,re ff nput utput rovider aller desc reaa p hs p e i o c d (3)

where:

 esc readd h – is a human-readable readh description of

a particular desktop application service, accessible for the

caller allerc . All other elements in the formalization remain the

same as described in equation (2). The elements such as

preconditions rep , effects ffe , input nputi , output utputo ,

provider roviderp , and caller allerc continue to hold their

respective meanings and definitions as previously stated.
Additionally, in the context of application software as

formalization, there is no specific set of constraints imposed.
Unlike web services ws , which adhere to the RESTful
architectural style with a defined set of constraints [33],
application software as does not have a predetermined set of
constraints that govern its design and behavior. Instead, the
constraints applicable to application software as may vary
depending on the specific requirements, platform, and design
principles employed during its development. Therefore, the
formalization of application software as allows for greater
flexibility and adaptability, as it can encompass a wide range
of applications with different constraints and design
considerations. This flexibility enables developers to tailor the
software to meet the unique needs of users and provide a
seamless user experience, whether through a graphical or
command-line interface.

 : 1,unc evkit j
n

F j nD C

 – is a set of functions that

encompass the functional aspects of OntoChatGPT’s
information technology. Each function corresponds to a
specific knowledge management pipeline or process, which
arises from the integration and interaction of the elements

within the evkitD . denotes a set of nonnegative integer

numbers.

,

, , , ,, 0j evkit o p oj p
C kD ws asC o p o p l

– is a subset of web services and application software that are

required for the successful implementation of the j-th function

within the evkitD . This subset specifically caters to the

requirements of the respective function. denotes a set of
nonnegative integer numbers.

 , ,nv prl os flossE – is a set of elements that come

together as layers forming the Knowledge Integrated
Development Environment (K-IDE). Each element within this
set contributes to the overall functionality and capabilities of
the K-IDE.

The element prl , which stands for the physical resource

layer, represents the physical hardware and facility resources
as defined in [35]. It encompasses the tangible components that
form the foundation for the K-IDE infrastructure. The prl
layer ensures the availability and proper functioning of the
necessary physical resources required to support the K-IDE
framework.

The element os , which refers to the operating system
layer, represents the guest operating system within the K-IDE.
The operating system layer is designed to utilize Unix-like
operating systems, such as Ubuntu Server for x86 systems and
DietPi Debian-based lightweight operating system for ARM-
based single board computers. It supports various light-weight
desktop environments including LXDE, XFCE, or LXQt. This
layer provides the foundation for running the K-IDE
framework and ensures compatibility with the selected
operating system environments and desktop environments.

The FLOSS layer, denoted as ,floss in ex ,

represents the Free/Libre and open-source software (FLOSS)
component within the K-IDE. This layer encompasses both
internal software components, represented by the set

,

, 1, , 1,w d
k l

in ws as w k d l

, and external

software components, represented by the set

 , 1, ,iex ws i n n . denotes a set of

nonnegative integer numbers.
The internal software components in include a

comprehensive application suite tailored for the scientific
research and development lifecycle, along with additional
application software as and web services ws . On the other
hand, the external software components ex refer to specific
web services ws .

It is important to note that the evkitD subset is part of the

FLOSS layer evkitD floss , signifying that the development

kit is built upon and aligned with the principles of Free/Libre
and open-source software.

B. OntoChatGPT DEVELOPMENT KIT
In the current stage of OntoChatGPT information technology,

the development kit evkitD set consists of the following

comprehensive collection of problem-oriented web services
ws and application software as :

1ws – WebProtégé [36] – is an external web service

1ws ex , 1 evkitws D . It serves as a free and open-source

ontology development environment designed for the Web.
With WebProtégé, users can effortlessly create, upload,

Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

VOLUME 22(2), 2023 175

modify, and collaborate on ontologies, enabling seamless
collaborative viewing and editing experiences.

2ws – Apache Jena Fuseki [37] – is a FLOSS that provides

an HTTP interface for working with RDF data. Fuseki is a part
of the Apache Jena Java framework and offers robust support
for SPARQL, enabling seamless querying and updating of RDF
data through its SPARQL server engine [38]. Fuseki can be

locally deployed within the K-IDE environment nvE as an

internal component 2ws in , or it can be externally deployed

via the Software-as-a-Service application delivery model

(SaaS) 2ws ex [35], also 2 evkitws D .

3ws – KEn (former Konspekt)2 – is an NLP-powered

network toolkit (web service with API) for contextual and
semantic analysis with document taxonomy building feature.
The KEn web service supports processing of English,
Ukrainian and Norwegian (Bokmal). The KEn web service
offers comprehensive coverage of essential stages in NLP.
These stages include: text data extraction; text preprocessing,
spell checking and automatic correction, sentence/word
tokenization, part-of-speech tagging, lemmatization, word
stemming, shallow parsing, JSON/XML-structure generation.

KEn web service can be deployed locally as a part of K-IDE

nvE , as 3ws in , or can be deployed externally as

3ws ex via SaaS [35], 3 evkitws D .

4ws – natural language phrase analysis network

service [25] – is a specialized web service that supports natural
language text in both Ukrainian and English, enabling the
construction of semantic trees for phrases. These semantic trees
is a key part in facilitating SPARQL queries to form
connections with ontologies. Each semantic tree is defined by
marker words and expression types, providing valuable
insights into the structure of the sentence. In certain cases,
multiple semantic trees can be identified within an initial
sentence, allowing for the generation of suitable SPARQL
queries for each specific tree. This web service can be deployed

locally as a part of K-IDE nvE , as 4ws in , or can be

deployed externally as 4ws ex via SaaS [35], 4 evkitws D
.

5ws – OpenAI ChatGPT Playground [39] – is an

interactive web-based platform that allows users to experiment
with the capabilities of the ChatGPT language model. It
provides a user-friendly interface where individuals can input
text prompts and receive responses generated by ChatGPT in
real-time. The Playground offers a range of features to enhance
the user experience, including options to adjust the model’s
temperature and sampling settings. Playground is an external

web service 5ws ex , 5 evkitws D .

6ws – UkrVectōrēs (former docsim)3 – an NLU-powered

tool for knowledge discovery, classification, diagnostics and
prediction. UkrVectōrēs can be described as a “cognitive-
semantic calculator” that serves as a powerful tool for
distributional analysis. This web service encompasses several
essential elements, including: semantic similarity calculation
(UkrVectōrēs allows for the computation of semantic similarity

2 https://github.com/malakhovks/ken

between pairs of entities; this feature provides insights into the
relatedness and proximity of words in a semantic space); word
nearest neighbors (this functionality aids in exploring words
with similar meanings or associations); algebraic operations on
word vectors (UkrVectōrēs supports various algebraic
operations on word vectors, such as addition and subtraction);
semantic mapping (users can generate semantic maps that
depict the relations between input words; these maps are
valuable for visualizing clusters, oppositions, and exploring
hypotheses related to semantic relationships); access to raw
vectors and visualizations features; use of third-party
prognostic models.

1as – Apache Jena ARQ [37] is a SPARQL query engine

Java-based command-line utility. ARQ is a part of FLOSS Java
framework Apache Jena. The main ARQ features are:
SPARQL 1.1 support; client-support for remote access to any
SPARQL endpoint (including usage of SPARQL 1.1
SERVICE keyword); support for federated query; access and

extension of the SPARQL algebra. 1as in , 1 evkitas D .

2as – nlp_api [40] – is a collection of scripts (NLP API

from Language Tool) designed for essential text preprocessing

tasks specifically tailored to Ukrainian language. 2as in ,

2 evkitas D .

3as – is a desktop application service that enables the semi-

automatic and fully automatic generation of an OWL
ontology [25] from natural language text. It also supports the
semi-automatic import of knowledge from a dataset, capturing
it as RDF triples, and storing it in an RDF triplestore (TDB or
TDB2 component of Apache Jena for RDF storage and
query [38]; Apache Jena Fuseki) or in the graph database
(Neo4j) [38].

C. FUNCTIONAL MODEL OF THE OntoChatGPT
INFORMATION SYSTEM
The functional enrichment of the OntoChatGPT information
system is represented by the following set F of functions

synthesized from the evkitD :

 1 2 3 4, , ,F C C C C (4)

where:

1C – semi-automatic import of knowledge from a dataset

and capturing it as RDF triples snapshot in RDF triplestore.

2C – semi-automatic and fully automatic generation of an

OWL ontology from natural language text.

1C and 2C functions: expanding beyond the scope of this

research. Please note that a comprehensive description of the

1C and 2C functions, along with their respective information

and functional models, can be found in our previous
articles [25], [26]. For the purpose of this article, we will focus

on 3C and 4C functions of the OntoChatGPT information

system.

3 https://github.com/malakhovks/docsim

 Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

176 VOLUME 22(2), 2023

3C – ontology-driven dialogue function that integrates

ChatGPT and the structured prompts.

4C – structured prompts for ChatGPT meta-learning

function.
In the next section, we delve into a comprehensive study of

the functional models and methodological foundations

underlying two key components: 3C and 4C .

IV. METHODOLOGICAL FOUNDATIONS FOR
LEVERAGING THE OntoChatGPT INFORMATION SYSTEM
The presented methodology can be divided into two key
components, each serving a distinct purpose in the
development of the OntoChatGPT system. Firstly, we focus on
the technique of prompts-based meta-learning and the creation
of structured prompts for ChatGPT. This approach involves
leveraging prompts to instruct the meta-learning process of
ChatGPT, enabling it to generate more contextually relevant
and accurate responses. We delve into the methodology behind
designing and implementing these prompts, highlighting their
significance in enhancing the conversational capabilities of
ChatGPT.

The second part of the methodology centers around the
development of an automatic ontology-driven dialogue system
that integrates ChatGPT and the structured prompts. The core

idea behind this system is to incorporate specific subject areas
and their associated contexts, which may contain domain-
specific information not fully covered in ChatGPT’s
knowledge base. These contexts are stored in a database, such
as MongoDB or a relational database model, and are linked to
sets of named entities with their own ontology-like structure.
Additionally, sentiment analysis can be used to categorize the
contexts. The binding of named entities to their corresponding
contexts includes semantic components that elucidate the
entity's role within the context. These additional features aim
to improve the relevance and clarity of the selected context for
subsequent processing. To automate these processes, we utilize
our previously developed tools [25] and incorporate
transformer pre-trained BERT-based models like [41].

For semantic analysis and named entity extraction from
user-provided phrases, ChatGPT proves to be a valuable
resource. Special prompts are created specifically for this
purpose. Furthermore, ChatGPT is utilized for intent analysis
of user phrases. The defined intents, along with extracted
named entities annotated with their semantic roles, and the
selected list of contexts are then provided as input to ChatGPT.
Accompanying these inputs are the appropriate structured

prompts that clarify the information to be extracted and the
desired representation format. To provide a visual
representation of the overall system scheme, we present a

Figure 1: Context/container C4 model diagram of OntoChatGPT information system.

Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

VOLUME 22(2), 2023 177

context/container C4 model diagram [42] as depicted in
Figure 1. This diagram offers a comprehensive overview of the
system architecture, showcasing the interplay between various
components and their relationships. It serves as a visual aid in
understanding the underlying structure and functionality of the
OntoChatGPT system.

One of the most outstanding features of the system is the
flexibility of its structured prompts for ChatGPT. Instead of
rigid prompts, they are dynamically generated based on the
specific situation using instructions provided in the form of a
meta-ontology. This meta-ontology outlines the fields to be
included in the JSON (or XML) structure and the
corresponding prompt phrases to be inserted. Each instruction
or structured prompt for ChatGPT has its own set of fields and
predefined values that can be incorporated. Additionally, the
prompt includes a template structure for the response, which
ensures consistency and simplifies subsequent processing. The
creation of prompt phrases uses proven techniques from [11],
[18] to achieve effective and coherent prompts.

The operation of the OntoChatGPT system can be
conceptualized through a Petri Net-like scheme, specifically in
the form of a modified System Net Marking Graph [43]. This
formalization provides a structured representation of the
system’s functioning, capturing the flow and interactions
between various components. A more detailed formulation is
given in Eq. (5), (6).

In the OntoChatGPT system framework, several
components, states, processes, and variables contribute to the
functionality and operation of the dialogue system. Here is an
overview of the key elements.

3C component (is shown in equation (5)) – ontology-

driven dialogue function that integrates ChatGPT and the
structured prompts. Represents the process of the dialogue act
between the user and the OntoChatGPT system. Where:

States (0M to 10M):

0M – initial state of receiving a text message from the

user.

1M – pre-processed text state ready for subsequent

operations.

2M – state of the defined intents list.

3M – state of the formed information extraction prompt

template.

4M – state of an inference to be made.

5M – state of the formed inferences derivation prompt

template.

6M – State of the extracted named entities list.

7M – state of the selected contexts list.

8M – state of the extracted information from the

contexts.

9M – state of inferences derived from the contexts.

10M – state of the results obtained and presented in a

suitable form for the user.
Processes:

PREP – initial text pre-processing.
INT-DEF – defining the intents expressed in the input

text.
CON-INT-DEF – identifying if the intent involves

deriving inferences, prompting ChatGPT to provide related
information from the passed contexts or related knowledge.

ENT-EXTR – extraction of named entities from the
input text.

INF-PR-FORM – formation of prompts for defining
intents.

CON-PR-FORM – formation of a prompt to generate
inferences.

CX-SEL – selection of relevant contexts based on
identified named entities and intents.

INF-EXTP – information extraction from the selected
contexts based on the intent.

CON-DER – derivation of inferences from the selected
contexts.

RES-FORM – formatting and representation of the
results to the user.

Variables:
t – set of rules and operations to be applied during the

initial input text preprocessing.
text – raw input text provided by the user.

text – pre-processed and cleaned text for subsequent
operations.

metaO – meta-ontology that includes operating rules and

prompt formation instructions.

conO – contexts ontology related to the system.

1p – prompt for defining intents.

2p – prompt to analyze if any conclusions are to be

made.

3p – prompt for named entity extraction.

,4n n
p

 – prompts for information extraction based on a

specific intent ,n n .

5p – prompt for ChatGPT to generate conclusions from

the given contexts.

ins – set of intents in defined in the input text,

activated with specific entities.

,n nins

 – a specific single intent ,nin n .

d – indicates whether and which conclusions are
expected to be made.

1

2

3

, , ,s
2 3 INT-DEF INF-PR-FORM

, , , , e, s,
0 1 4 5PREP CON-INT-DEF CON-PR-FORM

, ,
6 ENT-EXTR

3

meta meta in

meta meta con i

meta

p O text

p O text dt text

O te

O

O

xt

O

p

M M

C M M M M

M

41 1

42 2

4

5

,s ,

8INF-EXTR

,s ,

8INF-EXTR
,

7 10CX-SEL RES-FORM

,s ,

8INF-EXTR

, ,
9CON-DER

...

in

in

n meta

inn n

p c

p c

r O

p c

p d c

M

M

M M

M

M

 (5)

 Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

178 VOLUME 22(2), 2023

e – set of named entities found in the input text.
c – selected contexts.
r – data structures representing the results obtained

from ChatGPT.
The dialogue act procedure can be outlined as follows:

Upon receiving textual information (request) from the user, it
undergoes intent analysis using ChatGPT with the assistance of
a specific prompt. The outcome is a list of dictionaries
containing the following keys:

 “name”: the name of an intent from the provided list in
the prompt;

 “type’: a more general classification of the intent, such
as narration, interrogation, or imperative;

 “probability”: a float value ranging from 0 to 1,
indicating the probability of the intent being present in
the user's text;

 “subject”: the subject associated with the intent, if
applicable;

 “object”: the object associated with the intent, if
applicable.

The prompt can include various possible intents, such as
“quantity”, “way of doing”, “object”, “subject”, “action”,
“location”, “direction”, “scene of action”, “conditions”,
“instrument”, “collaborator”, “relation”, “cause”, “sequence”,
“origin”, and others. These intents represent semantic
categories and provide a framework for understanding the
user’s request.

Additionally, the structured prompt includes fields for
information to provide, language to use, and other technical
details related to input and output.

Simultaneously, the extraction of named entities is
performed using ChatGPT with the aid of another prompt. The
result should provide lemmatized words grouped according to
entities, specify the type of each group (name or verbal), and
indicate the main word within each group.

Based on the extracted named entities and their semantic
roles (from intents), the system selects the appropriate contexts
from the contexts ontology.

Next, a request is made to ChatGPT, incorporating the
previously selected contexts and intent lists, along with the
relevant entities (subjects and objects) actualized within the
prompts. The form of this prompt can vary significantly and
depends on the specific intent or list of intents. The rules for its
composition, including the required fields and prompt phrases,
are defined in the meta-ontology.

The meta-ontology also encompasses rules for the final
representation of results, depending on the types of fields
involved. This may include plain text, numbers, dates, lists,
tables, or links to external resources, among other possibilities.

The creation of the meta-ontology involves meta-learning,
which encompasses the development and fine-tuning of
appropriate prompts. This iterative process involves a
knowledge engineer (an individual actor) and ChatGPT’s
Playground. Initially, the knowledge engineer formulates a
structured prompt in JSON (XML, YAML, etc.) format,
consisting of keys and prompt phrases designed with a specific
purpose, drawing from past experience in prompt development

and general knowledge. This prompt is then provided to
ChatGPT, and the response is analyzed to determine if it
adequately satisfies the intended objective.

If the ChatGPT response is completely incorrect or exhibits
drawbacks or disadvantages, modifications are made to the
initial prompt. These changes may involve adding additional
fields, removing redundant or ineffective aspects of the prompt,
and editing prompt phrases to enhance task clarity. The
improved prompt is then passed back to ChatGPT for further
iterations. This iterative process continues until the obtained
response closely aligns with the desired and expected result.

Once an appropriate set of prompts has been developed and
the behavior of ChatGPT on these prompts has been studied,
they are consolidated into the meta-ontology format. The
creation of the meta-ontology is a manual process, where the
structure of the prompt and the properties of their fields are
described based on different anticipated situations and
objectives for the problem-solving task. A formalized graphical

representation of this meta-learning process 3C component is

shown in equation (6).

3C component – the process of meta-learning. Where:

States (0M to 5M):

0M – the purpose of creating the prompt;

1M – an initial prompt generated based on guesses and

common wisdom;

2M – ChatGPT’s response to the initial prompt;

3M – a corrected and edited prompt;

4M – ChatGPT’s response to the corrected prompt;

5M – the meta-ontology with instructions and rules for the

new prompt.
Processes:
GUESS – making educated guesses and considerations for

the new prompt;
GPT – Initialization of ChatGPT;
CORR – correction and editing of the prompt;
ONT – integration of the new prompt into the meta-

ontology.
Variables:
purpose – the underlying idea for creating the new

prompt;
p – the initial prompt;

p – the revised prompt;

finp – the final version of the prompt;

res – ChatGPT’s response to the initial prompt;

res – ChatGPT’s response to the revised prompt.

V. RESULTS AND DISCUSSION
A prototype of the proposed system has been developed,
incorporating all the main suggested components. Although the
structure of the meta-ontology can be complex and intricate, it

,
3

4 0 1 2 5
5 3

fin

res p
ppurpose p CORR

GUESS ChatGPT res ONT
ChatGPT

M
C M M M M

M M

 (6)

Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

VOLUME 22(2), 2023 179

is not feasible to include it in this document. However, you can
find the meta-ontology in the public GitHub repository
associated with this paper, along with other related materials.
The prompts in the system are formulated based on the rules
provided and are represented as JSON structures. The
following JSON scheme presents an example prompt, which
focuses on intent extraction and their association with relevant
entities, if applicable:

{
 "information to provide": [
 "define intents",
 "find subjects",
 "find objects"
],
 "text": "<A text to be analyzed>",
 "language": "Ukrainian",
 "input information field": "text",
 "possible intents": [
 "quantity",
 "place",
 "way of doing",
 "object",
 "subject",
 "action",
 "location",
 "direction",
 "scene of action",
 "conditions",
 "instrument",
 "collaborator",
 "relation",
 "cause",
 "sequence",
 "origin"
],
 "several intents": true,
 "intents probability": true,
 "show intent subject": true,
 "max intents number": 4,
 "intents arrange": "by probability",
 "output format": "JSON",
 "output representation template": {
 "result": [
 {
 "intent": "intent name - string",
 "type": "narration, interrogation or imperative",
 "probability": "float value",
 "subject": "subject of the intent as a name group -

string",
 "object": "object of the intent as a name or verb group

- string"
 }
]
 }
}
This is an example of a concise and basic prompt that

encompasses multiple fields, allowing for a comprehensive
explanation of the main features. One important aspect is the
“information to provide” instruction, which declares the
primary objectives of the task. The input message to be
analyzed is specified in the “text” field. To enhance
performance, it is beneficial to specify the language of the input
text, such as Ukrainian. However, any other suitable natural

language can be used depending on the content being processed
by ChatGPT. To instruct ChatGPT and restrict its intent
definition capabilities, the desired intents should be explicitly
specified in the “possible intents” field. Several Boolean-type
fields are provided to offer technical information about the
output. In this case, they include “several intents”, “intents
probability”, and “show intent subject”. The first field allows
for the identification of multiple intents in the given text, the
second field enables ChatGPT to estimate the probability of
each intent, and the last field instructs ChatGPT to specify the
subjects that activate the intents. To prevent an excessive
number of intents from being defined, their quantity can be
limited (in this paper, up to 4 intents) and sorted by probability.
It is always beneficial to define a pattern for the output data
structure, specifying the format in which the information
should be returned as a result. Therefore, an “output
representation template” field has been included.

The final responses provided by ChatGPT, based on the
defined intents and the selected contexts, may vary depending
on the intents themselves. However, they share a common
structure, which is a list of dictionaries with the fields “intent”
(the intent name) and “results” (a text or list of texts or other
data structures), or simply “none” if there is no relevant
information to provide.

The proposed method was tested using the first chapter of
the Ukrainian version of the “White Book on Physical and
Rehabilitation Medicine in Europe” [44], [45] as the subject
area, which served as the basis for constructing the context
ontology. The answers obtained from the system were
classified into the following categories:

 True Positive TP : The response was provided by
ChatGPT and it was correct.

 True Negative TN : The response was not provided by
ChatGPT, indicating that it either acknowledged its lack
of knowledge or indicated insufficient information in
the texts. This category also includes cases where
ChatGPT returned “None” as the response when the
appropriate information was indeed absent in the
contexts.

 False Positive FP : The system attempted to provide a
response, but it was incorrect.

 False Negative FN : The response was not provided by
ChatGPT, even though the correct answer was present
in the contexts.

It is important to note that the testing phase excluded
questions and phrases from unrelated subject areas that had
named entities not present in the context ontology. For such
cases, the true negative TN result is guaranteed because no
relevant contexts would be selected, and there would be no
further processing. Therefore, all the queries included in the
testing were formulated to go through all the stages of the
proposed approach.

Additionally, it should be emphasized that the proposed
approach allows for the possibility of multiple responses to a
single question, primarily due to the presence of multiple
defined intents. During the evaluation process, all the provided
responses were taken into account, regardless of whether they
were given in response to the same or different questions.

These considerations ensure a comprehensive assessment
of the system’s performance and its ability to handle various
queries while considering the defined intents and extracting
relevant information from the selected contexts.

 Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

180 VOLUME 22(2), 2023

The testing results are given in Table 1.

Table 1. The proposed method testing results

 True False
Positive 17 9
Negative 7 1

The testing of the proposed method yielded the following
values for the standard evaluation metrics:

 Accuracy: 0.7059;
 Precision: 0.6534;
 Recall: 0.9444;
 F1 Score: 0.7724.
These metrics provide a quantitative assessment of the

system’s performance in terms of its accuracy, precision, recall,
and overall effectiveness. The accuracy metric represents the
proportion of correct answers provided by the system compared
to the total number of queries. The precision metric measures
the system’s ability to provide accurate responses among the
answers it generates. The recall metric indicates the system’s
capability to retrieve all relevant answers from the available
contexts. The F1 score combines precision and recall to
provide a balanced measure of overall performance.

In addition to the standard metrics, we also considered
additional criteria, namely Precision* and Recall* (Eq. 7, 8).
These metrics differ from the standard Precision and Recall in
that they treat both true positive TP and true negative TN
results as true results, without distinguishing between them.
These additional criteria provide a broader evaluation of the
system’s effectiveness in capturing true answers and
identifying relevant information from the contexts. By
considering both positive and negative results, we gain a more
comprehensive understanding of the system's performance in
terms of precision and recall.

* 0.7273
TP TN

Precission
TP TN FP

 (7)

* 0.96
TP TN

Recall
TP TN FN

 (8)

Thus,
 * 2 *

0.8276
Precission Recall

F1
Precission+Recall

 .

The obtained metric values demonstrate the potential
usability of the proposed method, although there is still room
for improvement.

One of the main drawbacks identified in the current
implementation is the high rate of false positive FP responses,
resulting in a relatively low Precision value. This behavior can
be attributed to ChatGPT’s tendency to attempt to provide an
answer even when there is insufficient information available in
the given contexts. Additionally, the defined possible intents
may not always align perfectly with the provided message,
although such intents are often assigned a relatively low
probability.

However, it is worth noting that many of these false positive
answers were accompanied by true positive TP answers. In
other words, while an incorrect answer was provided in some
cases, a correct answer was given alongside it. These
accompanied false positive answers could be viewed as
supplementary information that may be tangentially related to

the main answer.
Although the presence of false positives impacts the

Precision value, the fact that they often coexist with true
positives suggests that the system is capable of providing
additional insights or related information. This observation
highlights the potential value of considering the accompanied
false positive responses in a practical context.

Addressing the issue of false positives and refining the
alignment between possible intents and the message content are
areas for further improvement to enhance the Precision of the
system.

Let us consider an example. The initial phrase (in
Ukrainian) is “На що повинна спиратися ФРМ?” (Eng. –
“What should the physical and rehabilitation medicine (PRM)
be based on?”). The system detects the following intents:

[
 {
 "intent": "subject",
 "type": "interrogation",
 "probability": 0.8,
 "subject": "ФРМ",
 "object": null
 },
 {
 "intent": "cause",
 "type": "narration",
 "probability": 0.6,
 "subject": "ФРМ",
 "object": "спиратися"
 },
 {
 "intent": "way of doing",
 "type": "interrogation",
 "probability": 0.4,
 "subject": null,
 "object": "спиратися"
 }
]

And the following named entities were found to select the
contexts:
[
 {
 "words": ["ФРМ"],
 "type": "noun",
 "main word": "ФРМ"
 },
 {
 "words": ["повинна", "спиратися"],
 "type": "verb",
 "main word": "спиратися"

}
]

We have the following intents that were defined: “subject”
(interrogation), “cause” (narration), and “way of doing”
(interrogation). All of these intents have relatively high
probabilities and should be considered for obtaining the final
answer set. However, only the second intent (cause/narration)
resulted in the ChatGPT providing a completely correct
answer. Surprisingly, this was not the intent with the highest
probability. The other intents also led to comprehensive and
concise answers, but they were not directly relevant to the

Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

VOLUME 22(2), 2023 181

initial question. The first intent provided information about
physical and rehabilitation medicine (PRM) and the “White
Book on Physical and Rehabilitation Medicine in Europe” [44],
[45], while the third intent focused on the purposes of the
International Classification of Functioning, Disability and
Health (ICF) [46], [47]. Although this additional information
might be interesting to the user, it is not directly related to the
original question.

Quantitative assessments of the OntoChatGPT information
system and ChatGPT4. Here are some key criteria of
comparison: response accuracy; knowledge coverage; semantic
understanding; conversational quality; knowledge expansion
and adaptability (the ability of the systems to expand their
knowledge and adapt to new information or domains can be
assessed); meta-learning performance.

The quantitative assessment results of OntoChatGPT
information system and ChatGPT are given in Table 2.

Please note the limitations:
 the Table 2 provides a general representation of the

quantitative assessments based on the specific domain
knowledge – rehabilitation medicine – the first chapter
of the Ukrainian version of the “White Book on Physical
and Rehabilitation Medicine in Europe” [44], [45];

 the free version of ChatGPT can’t use extensions via
plugins;

 the free version of ChatGPT doesn’t have a deep
knowledge of the context of external documents
(especially for the documents in Ukrainian);

In-depth quantitative comparison of OntoChatGPT and
ChatGPT is beyond the scope of this article. The actual
quantitative results would depend on the specific evaluation
methods, datasets, and performance metrics used in the
assessment of OntoChatGPT information system. Throughout
the OntoChatGPT system development lifecycle, quantitative
results compared to various similar systems will be available in
the public GitHub repository associated with this paper.

Table 2. Quantitative Assessment of OntoChatGPT
information system and ChatGPT

Metrics OntoChatGPT ChatGPT
Response accuracy High (82%) Moderate (70%)

Knowledge
coverage

Extensive within
domains (90%)

General (80%)

Semantic
understanding

High (90%) High (90%)

Conversational
quality

Moderate (70%) High (above 90%)

Knowledge
expansion and

adaptability
Efficient and adaptable Limited

Meta-Learning
Performance

Effective knowledge
retention

N/A (not applicable)

VI. CONCLUSIONS AND FURTHER PROSPECTIVE
A robust and comprehensive productive triad emerges from this
research, encompassing three key components: methodological
foundations for utilizing an ontology-driven structured prompts
in ChatGPT’s meta-learning, advanced information
technology, and a composite service known as OntoChatGPT
system.

By leveraging ontologies and structured prompts, the
OntoChatGPT information system demonstrated its potential

4 Compared with the free version of ChatGPT available via

https://chat.openai.com/

for enhancing the performance and knowledge background of
ChatGPT in specific subject areas and languages. We
formalized the method, which involves meta-learning for
creating and tuning structured prompts and the context
ontology, and a sequence of operations for detecting intents,
identifying named entities, selecting contexts, and forming the
final answer prompt based on the information and conclusions
to be provided within the contexts. The key feature of this
method is its ability to provide ChatGPT with specific
information by providing selected contexts, which can enhance
its knowledge in specific subject areas and improve its
performance with data in different languages.

The use of structured JSON prompts increases their
reliability and facilitates obtaining relevant answers. By
incorporating the meta-ontology, prompts become more
flexible and customizable, taking the meta-learning process to
a higher level.

The ontology in the OntoChatGPT information system
provides the following impacts:

 Structured Knowledge. The ontology provides a
structured representation of knowledge, organizing
information into concepts, relationships, and properties.
It allows for better organization and understanding of
the domain-specific information used in the system.

 Semantic Understanding. The ontology enables the
system to have a deeper understanding of the meaning
and context of user queries and prompts. It captures the
semantics of the domain, including relationships
between concepts, and helps the system interpret and
generate more accurate responses.

 Enhanced Accuracy. By incorporating domain-specific
ontological knowledge, the OntoChatGPT system can
improve the accuracy of its responses. The ontology
helps the system reason and retrieve relevant
information more effectively, leading to more precise
and contextually appropriate answers.

 Knowledge Expansion. The ontology provides a
foundation for knowledge expansion and integration.
New information can be added to the ontology,
expanding the system’s knowledge base and allowing it
to handle a wider range of subjects and queries.

 Domain-Specific Adaptability. The ontology enables the
system to adapt to specific domains or industries by
defining domain-specific concepts, properties, and
relationships. This allows the OntoChatGPT system to
provide more tailored and specialized responses within
specific knowledge domains.

 Interoperability. The ontology facilitates
interoperability by providing a shared understanding of
concepts and their relationships. It allows for easier
integration with other systems, databases, or ontologies
that follow the same or compatible ontological
standards.

 Knowledge-driven Prompts. The ontology-driven
prompts generated by the system use the structured
knowledge encoded in the ontology to guide and shape
the conversation. These prompts help elicit more
specific and relevant information from users and
contribute to a more meaningful and productive
dialogue.

 Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

182 VOLUME 22(2), 2023

 Meta-Learning Support. The ontology provides a meta-
learning framework by capturing and organizing
knowledge about the learning process itself. It allows
the system to learn from user interactions, track
performance, and continuously improve its
understanding and response generation capabilities.

While the technique has shown promising results, it still
exhibits a tendency for false positive answers. However, these
false positives are often accompanied by true positive answers
and, in cases where relevant information is lacking in the
selected contexts, true negative answers. These true negative
answers can be seen as providing additional information about
the subject matter.

Furthermore, it is important to highlight that the proposed
methodology is applicable not only to the specific ChatGPT
model used in this study but also to other chatbot systems based
on LLM such as Google's Bard, which relies on the PaLM 2
LLM. The underlying principles and techniques of meta-
learning, structured prompts, and ontology-driven information
retrieval can be adapted and utilized in conjunction with
different LLM-based systems. This highlights the potential
versatility and scalability of the proposed approach across
various chatbot platforms, enabling its wider applicability in
the field of natural language processing and dialogue systems.

The proposed approach presented here serves as a
preliminary prototype for a more advanced dialogue and
reference system that is yet to be developed. In order to enhance
the system’s performance, several improvements are planned
for the structured JSON prompts. Additional inputs, such as
sentiments detected in the initial message and the selected
contexts, will be incorporated into the prompts. The prompt
phrases for keys and values will also be refined, along with the
overall structure, to increase their certainty and mitigate the
detection of irrelevant intents, thereby reducing the occurrence
of false positive answers. These enhancements are expected to
improve the Precision criterion value of the system.

VII. ACKNOWLEDGEMENTS
This study would not have been possible without the financial
support of the National Research Foundation of Ukraine. Our
work was funded by Grant contract: Development of the cloud-
based platform for patient-centered telerehabilitation of
oncology patients with mathematical-related modeling [48],
application ID: 2021.01/0136.

The research team of the Glushkov Institute of Cybernetics
would like to give special recognition to Ellen Cohn (PhD, CCC-
SLP, ASHA-F, Department of Communication, University of
Pittsburgh, PA, USA), Editor-in-Chief of the International
Journal of Telerehabilitation. We greatly appreciate her efforts in
promoting Ukrainian science through the dissemination of
research works in scholarly publications.

VIII. DATA AVAILABILITY
The meta-ontology, terms/contexts ontology, SPARQL queries
to meta-ontology, samples of structured JSON prompts for the
ChatGPT, test questions and results are publicly available via
public GitHub repository5.

Detailed information about the utilization and access to the
services included in the OntoChatGPT information system can
be obtained upon request. The software alpha version of these
services is also available for further exploration and evaluation.

5 https://github.com/knowledge-ukraine/OntoChatGPT

Please reach out to our team to request access and to learn more
about the functionalities and features of OntoChatGPT.

References

[1] OpenAI, “Models - OpenAI API,” OpenAI Platform, Jun. 01, 2023.
[Online]. Available at:
https://platform.openai.com/docs/models/overview.

[2] OpenAI, “Introducing ChatGPT,” Introducing ChatGPT, Nov. 30, 2022.
[Online]. available at: https://openai.com/blog/chatgpt (accessed Jun. 01,
2023).

[3] OpenAI, “GPT-4 Technical Report,” arXiv, Mar. 27, 2023. doi:
10.48550/arXiv.2303.08774.

[4] GPT-4 Developer Livestream, (Mar. 14, 2023). Accessed: Jun. 01, 2023.
[Online Video]. Available at:
https://www.youtube.com/watch?v=outcGtbnMuQ

[5] O. V. Palagin, K. S. Malakhov, V. Yu. Velychko, and T. V. Semykopna,
“Hybrid e-rehabilitation services: SMART-system for remote support of
rehabilitation activities and services,” Int J Telerehab, no. Special Issue:
Research Status Report – Ukraine, May 2022,
https://doi.org/10.5195/ijt.2022.6480..

[6] OpenAI, “OpenAI API Reference,” OpenAI Platform, Jun. 01, 2023.
[Online]. Available at: https://platform.openai.com/docs/api-reference.

[7] JushBJJ, “JushBJJ/Mr.-Ranedeer-AI-Tutor: A GPT-4 AI Tutor Prompt
for customizable personalized learning experiences.,” GitHub, Jun. 01,
2023. [Online]. Available at: https://github.com/JushBJJ/Mr.-Ranedeer-
AI-Tutor (accessed Jun. 01, 2023).

[8] {Structured} Prompt, “Structured JSON Prompts are even better in GPT-
4.,” {Structured} Prompt. [Online]. Available at:
https://structuredprompt.com/structured-json-prompts-are-even-better-
in-chatgpt-4/.

[9] GPT 4 is Smarter than You Think: Introducing SmartGPT. [Online
Video]. Available at:
https://www.youtube.com/watch?v=wVzuvf9D9BU

[10] JushBJJ, “Mr. Ranedeer,” JushBJJ’s Substack, May 24, 2023. [Online].
Available at: https://jushbjj.substack.com/p/mr-ranedeer (accessed Jun.
01, 2023).

[11] K. Hebenstreit, R. Praas, L. P. Kiesewetter, and M. Samwald, “An
automatically discovered chain-of-thought prompt generalizes to novel
models and datasets,” arXiv, May 04, 2023. doi:
10.48550/arXiv.2305.02897.

[12] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” arXiv, Jan. 29, 2023. doi:
10.48550/arXiv.2205.11916.

[13] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large
language models,” arXiv, Jan. 10, 2023. doi:
10.48550/arXiv.2201.11903.

[14] S. Wiegreffe, J. Hessel, S. Swayamdipta, M. Riedl, and Y. Choi,
“Reframing human - AI collaboration for generating free-text
explanations,” arXiv, May 04, 2022.
https://doi.org/10.18653/v1/2022.naacl-main.47.

[15] OpenAI, “ChatGPT plugins,” OpenAI blog, Mar. 23, 2023. [Online].
Available at: https://openai.com/blog/chatgpt-plugins.

[16] OpenAI, “OpenAI plugins API,” OpenAI Platform, Jun. 01, 2023.
[Online]. Available at:
https://platform.openai.com/docs/plugins/introduction (accessed Jun. 01,
2023).

[17] S. Panda and N. Kaur, “Revolutionizing language processing in libraries
with SheetGPT: an integration of Google Sheet and ChatGPT plugin,”
Library Hi Tech News, 2023, https://doi.org/10.1108/LHTN-03-2023-
0051 .

[18] S. R. Moghaddam and C. J. Honey, “Boosting theory-of-mind
performance in large language models via prompting,” arXiv, Apr. 26,
2023. doi: 10.48550/arXiv.2304.11490.

[19] D. Hendrycks et al., “Measuring massive multitask language
understanding,” arXiv, Jan. 12, 2021. doi: 10.48550/arXiv.2009.03300.

[20] L. C. Magister, J. Mallinson, J. Adamek, E. Malmi, and A. Severyn,
“Teaching small language models to reason,” arXiv, Jun. 01, 2023. doi:
10.48550/arXiv.2212.08410.

[21] Y. Zhou et al., “Large language models are human-level prompt
engineers,” arXiv, Mar. 10, 2023. doi: 10.48550/arXiv.2211.01910.

[22] A. Quamar, F. Özcan, D. Miller, R. J. Moore, R. Niehus, and J. Kreulen,
“Conversational BI: an ontology-driven conversation system for business
intelligence applications,” Proc. VLDB Endow, vol. 13, no. 12, pp. 3369–
3381, 2020, https://doi.org/10.14778/3415478.3415557.

Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183

VOLUME 22(2), 2023 183

[23] A. V. Palagin, “Architecture of ontology-controlled computer systems,”
Cybern Syst Anal, vol. 42, no. 2, pp. 254–264, 2006,
https://doi.org/10.1007/s10559-006-0061-z.

[24] M. V. Bossche, P. Ross, I. MacLarty, B. V. Nuffelen, and N. Pelov,
“Ontology driven software engineering for real life applications,”
Proceedings of the 3rd Intl. Workshop on Semantic Web Enabled
Software Engineering, 2007. [Online]. Available at:
https://www.semanticscholar.org/paper/Ontology-Driven-Software-
Engineering-for-Real-Life-Bossche-
Ross/aabbe8ecd227bd931b44da8cea2aa8d2d1f76519

[25] A. A. Litvin, V. Yu. Velychko, and V. V. Kaverynskyi, “Tree-based
semantic analysis method for natural language phrase to formal query
conversion,” RIC, vol. 57, no. 2, pp. 105–113, 2021,
https://doi.org/10.15588/1607-3274-2021-2-11.

[26] O. V. Palagin, V. Y. Velychko, K. S. Malakhov, and O. S. Shchurov,
“Distributional semantic modeling: A revised technique to train
term/word vector space models applying the ontology-related approach,”
in CEUR Workshop Proceedings, Kyiv, Ukraine: CEUR-WS, Sep. 2020,
pp. 342–353. [Online]. Available at: http://ceur-ws.org/Vol-
2866/ceur_342-352palagin34.pdf

[27] B. DuCharme, Learning SPARQL: querying and updating with SPARQL
1.1, Second edition. Sebastopol, CA: O’Reilly Media, 2013.

[28] P. Ochieng, “PAROT: Translating natural language to SPARQL,” Expert
Systems with Applications: X, vol. 5, p. 100024, 2020,
https://doi.org/10.1016/j.eswax.2020.100024.

[29] S. Shaik, P. Kanakam, S. Mahaboob Hussain, D. Suryanarayana,
“Transforming natural language query to SPARQL for Semantic
Information Retrieval,” International Journal of Engineering Trends and
Technology - IJETT, vol. 41, no. 7, pp.; 347-350, 2016.
https://doi.org/10.14445/22315381/IJETT-V41P263.

[30] J. Lehmann and L. Bühmann, “AutoSPARQL: Let users query your
knowledge base,” The Semantic Web: Research and Applications, G.
Antoniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis, P. De
Leenheer, and J. Pan, Eds., in Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2011, pp. 63–79. https://doi.org/10.1007/978-3-
642-21034-1_5.

[31] O. V. Palagin, V. Yu. Velychko, K. S. Malakhov, and O. S. Shchurov,
“Research and development workstation environment: The new class of
current research information systems,” in CEUR Workshop Proceedings,
Kyiv, Ukraine: CEUR-WS, May 2018, pp. 255–269. [Online]. Available
at: http://ceur-ws.org/Vol-2139/255-269.pdf

[32] C. Petrie, A. Hochstein, and M. Genesereth, “Semantics for smart
services,” in The Science of Service Systems, H. Demirkan, J. C. Spohrer,
and V. Krishna, Eds., in Service Science: Research and Innovations in the
Service Economy. Boston, MA: Springer US, 2011, pp. 91–105.
https://doi.org/10.1007/978-1-4419-8270-4_6.

[33] C. J. Petrie, Web Service Composition. Cham: Springer International
Publishing, 2016. https://doi.org/10.1007/978-3-319-32833-1.

[34] L. H. Etzkorn, Introduction to Middleware: Web Services, Object
Components, and Cloud Computing, 1st ed. Boca Raton: Chapman and
Hall/CRC, 2017. https://doi.org/10.4324/9781315118673.

[35] S. Bhowmik, Cloud Computing, Cambridge, United Kingdom:
Cambridge University Press, 2017.

[36] Biomedical Informatics Research Group, “WebProtégé,” [Online].
Available at: https://webprotege.stanford.edu/

[37] The Apache Software Foundation, “Apache Jena,” [Online]. Available at:
https://jena.apache.org/index.html.

[38] O. Curé and G. Blin, RDF database systems: triples storage and SPARQL
query processing, First edition. Amsterdam ; Boston: Morgan Kaufmann,
2015.

[39] OpenAI, “OpenAI API Playground,” OpenAI Platform, 2023, [Online].
Available at: https://platform.openai.com/playground.

[40] Arysin, “LanguageTool API NLP UK” Corpus of modern Ukrainian
language, 2023. [Online]. Available at: https://github.com/brown-
uk/nlp_uk

[41] B. Savani, “Bhadresh-savani/distilbert-base-uncased-emotion Hugging
Face,” Huggingface. [Online]. Available at:
https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion.

[42] M. Richards and N. Ford, Fundamentals of Software Architecture: an
Engineering Approach, First edition. Sebastopol, CA: O’Reilly Media,
Inc, 2020.

[43] W. Reisig, “The Basic Concepts,” in Understanding Petri Nets: Modeling
Techniques, Analysis Methods, Case Studies, W. Reisig, Ed., Berlin,
Heidelberg: Springer, 2013, pp. 13–24. https://doi.org/10.1007/978-3-
642-33278-4_2.

[44] “White book on physical and rehabilitation medicine (PRM) in Europe,”
European Journal of Physical and Rehabilitation Medicine, vol. 54, no.
2, pp. 156–165, 2018, https://doi.org/10.23736/S1973-9087.18.05144-4.

[45] O. Vladymyrov, Ed., “White book on physical and rehabilitation
medicine in Europe,” Ukrainian Journal of Physical and Rehabilitation
Medicine, vol. 2, no. 2, 2018, (in Ukrainian) [Online]. Available at:
https://www.dropbox.com/s/izsi4did76gc6y0/WB-2018-3rd-Edition-
UA-fin.pdf?dl=0

[46] WHO, “International classification of functioning, disability and health
(ICF).” [Online]. Available at:
https://www.who.int/standards/classifications/international-
classification-of-functioning-disability-and-health

[47] “ICF,” Ministry of Healthcare of Ukraine, (in Ukrainian), [Online].
Available at: http://moz.gov.ua/mkf.

[48] K. S. Malakhov, “Letter to the editor – Update from Ukraine:
Development of the cloud-based platform for patient-centered
telerehabilitation of oncology patients with mathematical-related
modeling,” Int J Telerehab, vol. 15, no. 1, 2023,
https://doi.org/10.5195/ijt.2023.6562.

Oleksandr PALAGIN Academician of
the National Academy of Sciences of
Ukraine, DSc (Doctor of Sciences in
Technical Sciences), PhD, Professor,
Honored Inventor of Ukraine, Deputy
Director for Research of the Glushkov
Institute of Cybernetics of the National
Academy of Sciences of Ukraine,
Head of the Microprocessor
Technology Lab. Research interests:
AI, Semantic Web; Ontology
engineering.

https://orcid.org/0000-0003-3223-1391, palagin_a@ukr.net

VLADISLAV KAVERINSKIY PhD
(technical science), Senior researcher
Research interests: AI, Computational
linguistics; Phase transformations;
Deformational-heat processing;
Steels; Aluminum alloys; Powder
metallurgy; Metal casting processes.
https://orcid.org/0000-0002-6940-
579X,
insamhlaithe@gmail.com

ANNA LITVIN MSc, Junior researcher.
Microprocessor Technology Lab,
Glushkov Institute of Cybernetics.
Research interests: AI, Computational
linguistics; Ontology engineering;
Dialog systems.
http://orcid.org/0000-0002-5648-9074,
litvin_any@ukr.net

KYRYLO MALAKHOV MSc,
Researcher, Backend developer,
DevOps engineer. Research interests:
AI, Computational linguistics;
Ontology engineering; Digital health
(Hybrid e-rehabilitation). Member of
the expert subgroup on technical
issues and architecture of
telemedicine within the
Interdepartmental Working Group for
the development of the concept of
implementation of telemedicine in
Ukraine.

https://orcid.org/0000-0003-3223-9844,
https://linktr.ee/malakhovks,
k.malakhov@outlook.com

