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 ABSTRACT This research presents a comprehensive methodology for utilizing an ontology-driven structured 
prompts system in interplay with ChatGPT, a widely used large language model (LLM). The study develops formal 
models, both information and functional, and establishes the methodological foundations for integrating ontology-
driven prompts with ChatGPT’s meta-learning capabilities. The resulting productive triad comprises the 
methodological foundations, advanced information technology, and the OntoChatGPT system, which collectively 
enhance the effectiveness and performance of chatbot systems. The implementation of this technology is demonstrated 
using the Ukrainian language within the domain of rehabilitation. By applying the proposed methodology, the 
OntoChatGPT system effectively extracts entities from contexts, classifies them, and generates relevant responses. The 
study highlights the versatility of the methodology, emphasizing its applicability not only to ChatGPT but also to other 
chatbot systems based on LLMs, such as Google’s Bard utilizing the PaLM 2 LLM. The underlying principles of meta-
learning, structured prompts, and ontology-driven information retrieval form the core of the proposed methodology, 
enabling their adaptation and utilization in various LLM-based systems. This versatile approach opens up new 
possibilities for NLP and dialogue systems, empowering developers to enhance the performance and functionality of 
chatbot systems across different domains and languages. 
 

 KEYWORDS ontology engineering; prompt engineering; prompt-based learning; meta-learning; ChatGPT; 
OntoChatGPT; chatbot; transdisciplinary research; ontology-driven information system; composite service. 
 

I. INTRODUCTION 
utomatic dialogue systems have been developed for 
several decades, ever since the advent of computers with 

user interfaces. The concept of utilizing natural language for 
human-machine interaction has always been highly desirable. 
It offers convenience and ease compared to the need to learn a 
specific language and follow predefined instructions. The 
introduction of textual interfaces, followed by windows and 
menu-based interfaces, marked a significant breakthrough, 
making computers accessible and widely used tools for various 
users. 

However, despite their practicality and convenience, these 
interfaces still lack the necessary flexibility. They are often 
characterized by rigid predetermined structures and can 
become complex and intricate. Consequently, users are 
required to invest significant time and effort in familiarizing 
themselves with all the features of such interfaces. It would be 
ideal if users could simply express their desired actions or 

requested information in a natural language, either through 
speech or typing, thereby eliminating the need for extensive 
interface exploration. 

By incorporating natural language understanding and 
processing capabilities into dialogue systems, users would 
benefit from a more intuitive and user-friendly interaction. This 
advancement would enhance the efficiency and usability of 
these systems, ensuring a smoother user experience and 
reducing the learning curve typically associated with complex 
interfaces. 

Currently, there exists a range of virtual assistants that 
employ natural language processing both in written and spoken 
form. Prominent examples include AI systems like Apple Siri, 
Google Assistant, Amazon Alexa and Microsoft Cortana, 
among others. However, the development of ChatGPT (which 
is based upon OpenAI’s GPT-3, GPT-3.5 and GPT-4 
foundational GPT models [1], and has been fine-tuned for 
conversational applications using both supervised and 
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reinforcement learning techniques) [2]–[4] has marked a 
significant breakthrough in the field of artificial intelligence, 
particularly in the domains of natural language processing 
(NLP) and understanding (NLU). The “GPT” stands for 
generative pre-trained transformer – a type of large language 
model (LLM). ChatGPT is a purely textual system and lacks 
the ability to recognize and generate oral speech or interact with 
physical objects in the material world. Nevertheless, its 
potential as a powerful natural language system is vast, offering 
a wide range of capabilities for information provision, 
generation, and structuring. Various program features and 
tricks can be accomplished using ChatGPT. 

Consequently, ChatGPT not only serves as a valuable 
standalone virtual assistant and companion but also holds great 
potential for integration into other software systems, leveraging 
its abilities to fulfill specific purposes. This perspective has 
opened up new avenues for research, particularly in exploring 
how ChatGPT can be harnessed to serve determined goals 
required for system activities. 

Researchers now have the opportunity to delve into 
investigating methods to effectively utilize and optimize 
ChatGPT’s capabilities within specific domains. This includes 
adapting and customizing ChatGPT to perform tasks and 
address challenges tailored to the unique requirements of 
different software systems. By effectively “taming” ChatGPT, 
researchers can harness its strengths and align it with the 
specific objectives of various applications, leading to further 
advancements in the field of natural language processing and 
expanding the boundaries of what can be achieved through 
intelligent information systems. 

The aim of the research discussed in this paper is to 
establish formal models (both information and functional), and 
to develop methodological foundations for utilizing an 
ontology-driven structured prompts system in interplay with 
ChatGPT. The system developed in this research is called 
OntoChatGPT. This system enables the provision of 
information and inference (according to the definition given in 
“The explanatory ontograph dictionary for knowledge 
engineering”1 – expanding the knowledge base by deriving new 
information from existing knowledge units; this process 
includes various operations, with logical deduction being a 
notable case) based on a specific set of contexts, functioning as 
a dialogue system. Logical deduction involves inferring new 
information based on established facts, rules, and logical 
principles. It enables the system to draw logical conclusions 
and make connections between different pieces of information. 
By employing deductive reasoning, the system can extend its 
understanding and generate additional knowledge units that 
were not explicitly provided. This process of obtaining new 
information units from previously known ones plays a crucial 
role in enhancing the system's knowledge and improving its 
overall functionality. It enables the system to make intelligent 
inferences, uncover hidden relationships, and provide more 
comprehensive and valuable insights to the user. 

The implementation of this technology is demonstrated 
using the Ukrainian language and applied within the domain of 
rehabilitation (specifically e-rehabilitation [5]). 

By developing formal models, this research provides a 
structured framework for organizing and representing 
knowledge in a systematic manner. These models, 
encompassing both information and functional aspects, lay the 

 
1 https://www.dropbox.com/s/kg4w2rfluij3tuy/expl-onto-dict-ke.pdf?dl=0 

foundation for effectively integrating an ontology-driven 
approach with ChatGPT. The combined OntoChatGPT system 
enables sophisticated dialogue interactions that incorporate 
inference and leverage contextual information to provide 
meaningful responses. 

Furthermore, this research focuses on the practical 
application of the developed technology within the field of 
rehabilitation. By implementing and testing the OntoChatGPT 
system using the Ukrainian language, the study demonstrates 
the potential and versatility of the approach. Specifically, it 
showcases how the ontology-driven structured prompts system, 
in conjunction with ChatGPT, can enhance information 
provision and inference in the context of rehabilitation-related 
discussions. 

This work not only contributes to the advancement of 
dialogue systems and natural language processing but also 
demonstrates the applicability and relevance of the proposed 
methodology within a specific domain. The findings offer 
valuable insights into the potential benefits of integrating 
ontology-driven structured prompts systems with state-of-the-
art language models, paving the way for further developments 
and applications in the field of intelligent information systems 
and knowledge technologies. 

II. RELATED WORK 
The ChatGPT does not have a conventional API that consists 
of a fixed number of URLs and corresponding commands with 
predetermined actions. However, it does have an API that 
accepts natural language commands [6]. Nonetheless, there are 
certain peculiarities associated with this approach. Firstly, 
while ChatGPT possesses knowledge across a wide range of 
languages, its understanding and proficiency levels in each 
language may vary. English serves as the primary language for 
ChatGPT, and commands and instructions should be written in 
English, even when dealing with other languages. 

Another crucial aspect is that instructions provided to 
ChatGPT need to be well-structured, clear, and precise. Due to 
the limitation on the number of tokens that can be processed by 
ChatGPT, instructions should be concise yet informative. 
Experimental evidence with ChatGPT [7]–[10] has revealed 
that one effective approach for delivering concise yet 
comprehensive commands and instructions is by formatting 
them as JSON. 

By structuring instructions in JSON format, researchers and 
developers can ensure that the information is organized, easily 
interpretable, and maximally efficient for ChatGPT. This 
approach enables clear communication of the desired actions 
and expectations to the system, optimizing the interaction 
between users and ChatGPT. 

Furthermore, it is essential to strike a balance between 
brevity and clarity in the instructions provided to ChatGPT. 
While instructions should be concise to accommodate token 
limitations, they must also convey sufficient information to 
instruct ChatGPT accurately. Achieving this balance ensures 
that the system’s responses align with the user's intentions and 
expectations. 

Despite the absence of a traditional API, ChatGPT offers an 
API that accepts natural language commands. Adhering to 
English as the main language, structuring instructions in a clear 
and precise manner, and leveraging JSON formatting for 
concise yet comprehensive commands are key considerations 



 Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183 

172 VOLUME 22(2), 2023 

for effectively utilizing ChatGPT’s capabilities. These 
strategies enhance the interaction between users and the 
system, facilitating more accurate and meaningful responses, 
compared with chain-of-thought reasoning technique [9], [11]–
[14]. 

In public GitHub repository “Mr. Ranedeer: Your 
personalized AI Tutor!” [7], an example of an instruction set 
aimed at transforming ChatGPT into a virtual tutor can be 
found. These instructions are formatted as nested dictionaries, 
with concise key terms representing the main concepts of the 
intended purpose. The values associated with these keys can be 
dictionaries, providing further details, or natural language 
(English) phrases offering comprehensive and clear 
explanations. 

To utilize this virtual tutor functionality, one can simply 
copy and paste the provided instruction into the ChatGPT 
interface. By doing so, ChatGPT can be adapted to serve as a 
virtual tutor across various subject areas covered in its 
knowledge base. The concept of using structured prompts to 
instruct ChatGPT’s behavior in a desired manner is both 
tempting and promising. 

Furthermore, ChatGPT has the capability to incorporate 
plugins stored in external resources [15]–[17]. Links to these 
resources can also be included in the instructions, thereby 
expanding the range of functionalities and possibilities. This 
opens up new avenues of research, referred to as prompt 
engineering and meta-learning. Recent studies [11], [13], [18]–
[20] highlight the significance and relevance of exploring these 
areas. 

The main objective of prompt engineering is to address the 
challenge of guiding ChatGPT towards appropriate responses, 
particularly in tasks requiring logical derivations. Instructions 
can be crafted to clarify the task's intricacies and break it down 
into sequential steps, guiding the AI towards the desired 
outcome. Prompt engineering is akin to an art form, involving 
the careful selection of specific words, phrase structures, and 
their order to elicit the desired AI behavior. Various strategies 
have been developed, including the use of imperatives to define 
the AI's role, planned sequences, structured data formats (such 
as JSON, XML, YAML), self-critique chains, and others. 

Determining the most effective strategy for prompt 
engineering remains an open question, but promising 
approaches have been reported in [10], [21]. This work 
emphasizes the importance of prompt phrase structure and the 
utilization of specific words and expressions. Combining the 
findings from this study with other relevant research can yield 
valuable insights and contribute to advancing the field. 

Prompt engineering opens up possibilities for providing 
targeted and specific learning to ChatGPT, enabling it to gain a 
deeper understanding of subjects it may not have sufficient 
knowledge about. While mechanisms like model training and 
fine-tuning exist in ChatGPT, they can be costly and require 
large, carefully curated datasets. In some cases, it may not be 
feasible or practical to follow this approach. Instead, valuable 
information can be conveyed in textual form or through data 
structures combined with JSON prompts that instruct ChatGPT 
algorithms on how to process the provided data. This allows for 
the expansion of ChatGPT’s knowledge and capabilities, 
making it suitable for dialogue systems or even control 
systems. 

While employing a rigid structure like the one described in 
[22] may be a functional approach, there is room for further 
development and exploration. Systems that interact with 

ChatGPT can utilize a variety of instructions or templates 
tailored for different purposes. The prompts themselves can be 
made more flexible by incorporating optional fields and 
providing different explanations (values) for each field. Such a 
system should include instructions on when and how to use the 
templates with ChatGPT and what specific values should be 
used in different cases. These instructions for creating and 
utilizing structured prompts in ChatGPT can be organized 
within an ontology, resulting in an ontology-driven system. 

The utilization of ontologies, or meta-ontologies, as a 
repository of system behavior rules is discussed in [21], albeit 
without direct reference to chat ChatGPT or similar 
applications. In this approach, the ontology serves as a 
decision-making module, guiding the system on how to handle 
specific data types and represent them in the user interface. 

By incorporating ontologies to instruct the behavior of 
ChatGPT and leveraging structured prompts, we can develop a 
powerful ontology-driven system. This system enhances 
ChatGPT’s ability to adapt and learn in specific domains, 
leveraging the flexibility of prompts, and benefiting from the 
knowledge stored within the ontology. The combination of 
prompt engineering, ontology utilization, and ChatGPT-based 
chat systems holds great potential for advancing intelligent 
information systems and knowledge technologies in various 
domains. 

The foundational concepts of information systems with an 
ontology-driven architecture are extensively discussed in [23], 
[24]. In “The explanatory ontograph dictionary for knowledge 
engineering”, ontology-driven architecture – is defined as a 
system architecture that revolves around two main 
components: an “Active” computer ontology and a “Problem 
Solver”. These components work collaboratively to govern the 
information processing process, with a specific focus on 
addressing practical user problems and supporting targeted 
activities. Furthermore, an ontology-driven information system 
is characterized as a comprehensive system comprising several 
key elements. These include a knowledge base that is 
intricately linked to ontologies (typically represented as a finite 
collection of systematically integrated knowledge bases within 
specific subject domains), an inference engine, an application 
processing subsystem, and interfaces (UI, API) for user 
interaction and/or external environment integration. 
Collectively, these components facilitate the effective usage of 
ontological knowledge within the information system. 

The approach we are adopting in this work is distinct from 
the methodology employed in our previous researches [25], 
[26]. In our previous works, the ontology served as the primary 
repository for information within the dialogue system, rather 
than as a container for rules, which were organized using a 
different approach. Nonetheless, certain elements from those 
previous developments are still applicable to our current 
endeavor. For example, techniques such as named entity 
extraction, linked context analysis, and the automatic 
generation of formal SPARQL [27] queries from user-provided 
natural language phrases are utilized. Addressing these 
challenges is crucial and inevitable in the development of such 
systems [28]–[30]. However, they fall outside the scope of the 
present work. 

In our previous studies [25], [26], we focused on utilizing 
the ontology as a central storage for the information exchanged 
within the dialogue system. In contrast, the current work 
explores the utilization of the ontology as a framework for 
defining rules and guiding the behavior of the system. Despite 
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this shift in approach, certain aspects of our previous 
developments remain relevant. Specifically, techniques such as 
named entity extraction, linked context analysis, and the 
automatic generation of formal SPARQL queries from user-
provided natural language phrases have proven valuable and 
are also incorporated into the current work. 

However, it is important to note that the challenges 
associated with these techniques, such as ensuring accurate 
entity extraction and generating precise SPARQL queries, are 
complex and require dedicated research efforts [28]–[30]. 
While these topics are critical for system development, they lie 
beyond the scope of the present study. 

In summary, while our previous works [25], [26] employed 
ontology as a primary information repository within the 
dialogue system, the present work utilizes the ontology as a 
means of defining rules. Despite this shift, certain techniques 
from our earlier research, including named entity extraction, 
linked context analysis, and SPARQL query generation, 
continue to be relevant. However, addressing the challenges 
associated with these techniques remains an ongoing focus of 
research, which extends beyond the scope of the current study. 

III. FORMAL MODELS 

A.  INFORMATION MODEL OF THREE-TUPLE 
COMPOSITE SERVICE – OntoChatGPT INFORMATION 
SYSTEM 
The OntoChatGPT information system utilizes an information 
model based on a three-tuple composite service. This 
information model forms the foundation of OntoChatGPT’s 
functionality and allows for the integration of diverse services 
within the system. 

The OntoChatGPT information system is represented as a 
three-tuple composite service (CS) using the revised 
formalisms given in [31], [32]: 
 

, ,OntoChatGPT nevkit u c nvCS D F E  (1) 

 
where: 

 
,

, 1, , 1,evkit w d
k l

D ws as w k d l


  


 – is a 

comprehensive set of web services and application software 
available for developers which and enables the development of 
various applications and services within the system – 
OntoChatGPT development kit.   denotes a set of nonnegative 
integer numbers. 

The formalization of the web service, denoted as ws , is an 

extension of the Service  formalism introduced in [33]. This 
specialized representation incorporates additional properties, 

namely readm , readh and estr , which enhance the descriptive 

power and characteristics of the formal model: 
 

 , , , , , , ,re ff nput utput rovider aller esc estws p e i o p c d r  (2) 

 
where: 

allerc  – caller is the consumer or user of the web service. 

rep  – in the context of web services ws , preconditions 

refer to the conditions that must be satisfied before a web 

service can be consumed. They define the prerequisites that 

need to be met by the caller allerc  before invoking the service. 

ffe  – effects represent the conditions or changes in the 

world that can be expected to be true after the web service ws  
has been executed. They indicate the outcomes or results of 

performing the service. Within the preconditions rep  and 

effects ffe  framework, there are special subclasses known as 

input nputi  and output utputo . 

nputi  – input conditions correspond to preconditions rep , 

specifying the necessary input data or parameters required by 
the web service ws . 

utputo  – output conditions, on the other hand, align with 

effects ffe , denoting the expected output or outcomes 

produced by the web service ws . 

roviderp  – is the provider entity responsible for offering the 

web service ws . 

 ,esc read readd m h  – is a description of the particular 

web service ws  is provided in both machine-readable readm  

and human-readable readh  formats. This description, known as 

escd , serves as a resource accessible to the caller allerc , 

providing information about the web service ws  and its 
functionality. 

Additionally, the creation of web services ws  adheres to a 

set of constraints estr , influenced by the RESTful architectural 

style as outlined in [34]. These constraints include: 
 Client/Server: This constraint emphasizes the separation 

of concerns by adopting a client-server architecture. It 
allows for independent evolution of different 
components, enabling the client's user interface to 
evolve separately from the server and promoting 
simplicity in the server's design. 

 Stateless: The client-server interaction is designed to be 
stateless, meaning that the server does not store any 
client-specific context. Instead, the client maintains any 
necessary session information, ensuring that each 
request can be treated independently. 

 Cacheable: Data within a response can be labeled as 
cacheable or non-cacheable. If a response is cacheable, 
the client or intermediary can reuse it for similar future 
requests, reducing the need for redundant interactions 
with the server. 

 Uniform Interface: The uniform interface constraint 
ensures that there is a consistent and standardized 
interface between components. This uniformity 
facilitates interoperability and allows clients, servers, 
and network-based intermediaries to depend on the 
predictability of the interface's behavior. 

 Layered System: Components are organized into 
hierarchical layers, where each component is only 
aware of the layer with which it directly interacts. This 
layered approach promotes modularity and scalability, 
as components can operate within their designated 
layers without requiring knowledge of other layers. 
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 Code on Demand: This constraint is optional and 
provides support for extending client functionality 
through the downloading and execution of scripts. 
Clients can dynamically enhance their capabilities by 
acquiring and running code components from the 
server. 

By adhering to these constraints, the RESTful architectural 
style offers a framework for creating web services that are 
modular, scalable, stateless, cacheable, and exhibit a uniform 
interface. 

The formalization of application software as , 
encompassing both desktop applications and utilities that 
feature graphical or command-line user interfaces, can be 
considered a specialization within the broader Service  
formalism discussed in [33]. In this specialized context, an 

additional property escd  is introduced, denoted by the human-

readable readh  description of the particular desktop 

application: 
 

  , , , , , ,re ff nput utput rovider aller desc reaa p hs p e i o c d (3) 

 
where: 

 esc readd h  – is a human-readable readh  description of 

a particular desktop application service, accessible for the 

caller allerc . All other elements in the formalization remain the 

same as described in equation (2). The elements such as 

preconditions rep , effects ffe , input nputi , output utputo , 

provider roviderp , and caller allerc  continue to hold their 

respective meanings and definitions as previously stated. 
Additionally, in the context of application software as  

formalization, there is no specific set of constraints imposed. 
Unlike web services ws , which adhere to the RESTful 
architectural style with a defined set of constraints [33], 
application software as  does not have a predetermined set of 
constraints that govern its design and behavior. Instead, the 
constraints applicable to application software as  may vary 
depending on the specific requirements, platform, and design 
principles employed during its development. Therefore, the 
formalization of application software as  allows for greater 
flexibility and adaptability, as it can encompass a wide range 
of applications with different constraints and design 
considerations. This flexibility enables developers to tailor the 
software to meet the unique needs of users and provide a 
seamless user experience, whether through a graphical or 
command-line interface. 

 : 1,unc evkit j
n

F j nD C





 – is a set of functions that 

encompass the functional aspects of OntoChatGPT’s 
information technology. Each function corresponds to a 
specific knowledge management pipeline or process, which 
arises from the integration and interaction of the elements 

within the evkitD .  denotes a set of nonnegative integer 

numbers. 

 
,

, , , ,, 0j evkit o p oj p
C kD ws asC o p o p l


   


 

– is a subset of web services and application software that are 

required for the successful implementation of the j-th function 

within the evkitD . This subset specifically caters to the 

requirements of the respective function.  denotes a set of 
nonnegative integer numbers. 

 , ,nv prl os flossE   – is a set of elements that come 

together as layers forming the Knowledge Integrated 
Development Environment (K-IDE). Each element within this 
set contributes to the overall functionality and capabilities of 
the K-IDE. 

The element prl , which stands for the physical resource 

layer, represents the physical hardware and facility resources 
as defined in [35]. It encompasses the tangible components that 
form the foundation for the K-IDE infrastructure. The prl
layer ensures the availability and proper functioning of the 
necessary physical resources required to support the K-IDE 
framework. 

The element os , which refers to the operating system 
layer, represents the guest operating system within the K-IDE. 
The operating system layer is designed to utilize Unix-like 
operating systems, such as Ubuntu Server for x86 systems and 
DietPi Debian-based lightweight operating system for ARM-
based single board computers. It supports various light-weight 
desktop environments including LXDE, XFCE, or LXQt. This 
layer provides the foundation for running the K-IDE 
framework and ensures compatibility with the selected 
operating system environments and desktop environments. 

The FLOSS layer, denoted as  ,floss in ex , 

represents the Free/Libre and open-source software (FLOSS) 
component within the K-IDE. This layer encompasses both 
internal software components, represented by the set 

 
,

, 1, , 1,w d
k l

in ws as w k d l


  


, and external 

software components, represented by the set 

   , 1, ,iex ws i n n   .   denotes a set of 

nonnegative integer numbers. 
The internal software components in  include a 

comprehensive application suite tailored for the scientific 
research and development lifecycle, along with additional 
application software as  and web services ws . On the other 
hand, the external software components ex  refer to specific 
web services ws . 

It is important to note that the evkitD  subset is part of the 

FLOSS layer evkitD floss , signifying that the development 

kit is built upon and aligned with the principles of Free/Libre 
and open-source software. 

B. OntoChatGPT DEVELOPMENT KIT 
In the current stage of OntoChatGPT information technology, 

the development kit evkitD  set consists of the following 

comprehensive collection of problem-oriented web services 
ws  and application software as : 

1ws  – WebProtégé [36] – is an external web service 

1ws ex , 1 evkitws D . It serves as a free and open-source 

ontology development environment designed for the Web. 
With WebProtégé, users can effortlessly create, upload, 
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modify, and collaborate on ontologies, enabling seamless 
collaborative viewing and editing experiences. 

2ws  – Apache Jena Fuseki [37] – is a FLOSS that provides 

an HTTP interface for working with RDF data. Fuseki is a part 
of the Apache Jena Java framework and offers robust support 
for SPARQL, enabling seamless querying and updating of RDF 
data through its SPARQL server engine [38]. Fuseki can be 

locally deployed within the K-IDE environment nvE  as an 

internal component 2ws in , or it can be externally deployed 

via the Software-as-a-Service application delivery model 

(SaaS) 2ws ex  [35], also 2 evkitws D . 

3ws  – KEn (former Konspekt)2 – is an NLP-powered 

network toolkit (web service with API) for contextual and 
semantic analysis with document taxonomy building feature. 
The KEn web service supports processing of English, 
Ukrainian and Norwegian (Bokmal). The KEn web service 
offers comprehensive coverage of essential stages in NLP. 
These stages include: text data extraction; text preprocessing, 
spell checking and automatic correction, sentence/word 
tokenization, part-of-speech tagging, lemmatization, word 
stemming, shallow parsing, JSON/XML-structure generation. 

KEn web service can be deployed locally as a part of K-IDE 

nvE  , as 3ws in , or can be deployed externally as 

3ws ex  via SaaS [35], 3 evkitws D . 

4ws  – natural language phrase analysis network 

service [25] – is a specialized web service that supports natural 
language text in both Ukrainian and English, enabling the 
construction of semantic trees for phrases. These semantic trees 
is a key part in facilitating SPARQL queries to form 
connections with ontologies. Each semantic tree is defined by 
marker words and expression types, providing valuable 
insights into the structure of the sentence. In certain cases, 
multiple semantic trees can be identified within an initial 
sentence, allowing for the generation of suitable SPARQL 
queries for each specific tree. This web service can be deployed 

locally as a part of K-IDE nvE , as 4ws in , or can be 

deployed externally as 4ws ex  via SaaS [35], 4 evkitws D
. 

5ws  – OpenAI ChatGPT Playground [39] – is an 

interactive web-based platform that allows users to experiment 
with the capabilities of the ChatGPT language model. It 
provides a user-friendly interface where individuals can input 
text prompts and receive responses generated by ChatGPT in 
real-time. The Playground offers a range of features to enhance 
the user experience, including options to adjust the model’s 
temperature and sampling settings. Playground is an external 

web service 5ws ex , 5 evkitws D . 

6ws  – UkrVectōrēs (former docsim)3 – an NLU-powered 

tool for knowledge discovery, classification, diagnostics and 
prediction. UkrVectōrēs can be described as a “cognitive-
semantic calculator” that serves as a powerful tool for 
distributional analysis. This web service encompasses several 
essential elements, including: semantic similarity calculation 
(UkrVectōrēs allows for the computation of semantic similarity 

 
2 https://github.com/malakhovks/ken 

between pairs of entities; this feature provides insights into the 
relatedness and proximity of words in a semantic space); word 
nearest neighbors (this functionality aids in exploring words 
with similar meanings or associations); algebraic operations on 
word vectors (UkrVectōrēs supports various algebraic 
operations on word vectors, such as addition and subtraction); 
semantic mapping (users can generate semantic maps that 
depict the relations between input words; these maps are 
valuable for visualizing clusters, oppositions, and exploring 
hypotheses related to semantic relationships); access to raw 
vectors and visualizations features; use of third-party 
prognostic models. 

1as  – Apache Jena ARQ [37] is a SPARQL query engine 

Java-based command-line utility. ARQ is a part of FLOSS Java 
framework Apache Jena. The main ARQ features are: 
SPARQL 1.1 support; client-support for remote access to any 
SPARQL endpoint (including usage of SPARQL 1.1 
SERVICE keyword); support for federated query; access and 

extension of the SPARQL algebra. 1as in , 1 evkitas D . 

2as  – nlp_api [40] – is a collection of scripts (NLP API 

from Language Tool) designed for essential text preprocessing 

tasks specifically tailored to Ukrainian language. 2as in , 

2 evkitas D . 

3as  – is a desktop application service that enables the semi-

automatic and fully automatic generation of an OWL 
ontology [25] from natural language text. It also supports the 
semi-automatic import of knowledge from a dataset, capturing 
it as RDF triples, and storing it in an RDF triplestore (TDB or 
TDB2 component of Apache Jena for RDF storage and 
query [38]; Apache Jena Fuseki) or in the graph database 
(Neo4j) [38]. 

C. FUNCTIONAL MODEL OF THE OntoChatGPT 
INFORMATION SYSTEM 
The functional enrichment of the OntoChatGPT information 
system is represented by the following set F  of functions 

synthesized from the evkitD : 

 

 1 2 3 4, , ,F C C C C  (4) 

 
where: 

1C  – semi-automatic import of knowledge from a dataset 

and capturing it as RDF triples snapshot in RDF triplestore. 

2C  – semi-automatic and fully automatic generation of an 

OWL ontology from natural language text. 

1C  and 2C  functions: expanding beyond the scope of this 

research. Please note that a comprehensive description of the 

1C  and 2C  functions, along with their respective information 

and functional models, can be found in our previous 
articles [25], [26]. For the purpose of this article, we will focus 

on 3C  and 4C  functions of the OntoChatGPT information 

system. 

3 https://github.com/malakhovks/docsim 
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3C  – ontology-driven dialogue function that integrates 

ChatGPT and the structured prompts. 

4C  – structured prompts for ChatGPT meta-learning 

function. 
In the next section, we delve into a comprehensive study of 

the functional models and methodological foundations 

underlying two key components: 3C and 4C . 

IV. METHODOLOGICAL FOUNDATIONS FOR 
LEVERAGING THE OntoChatGPT INFORMATION SYSTEM 
The presented methodology can be divided into two key 
components, each serving a distinct purpose in the 
development of the OntoChatGPT system. Firstly, we focus on 
the technique of prompts-based meta-learning and the creation 
of structured prompts for ChatGPT. This approach involves 
leveraging prompts to instruct the meta-learning process of 
ChatGPT, enabling it to generate more contextually relevant 
and accurate responses. We delve into the methodology behind 
designing and implementing these prompts, highlighting their 
significance in enhancing the conversational capabilities of 
ChatGPT. 

The second part of the methodology centers around the 
development of an automatic ontology-driven dialogue system 
that integrates ChatGPT and the structured prompts. The core 

idea behind this system is to incorporate specific subject areas 
and their associated contexts, which may contain domain-
specific information not fully covered in ChatGPT’s 
knowledge base. These contexts are stored in a database, such 
as MongoDB or a relational database model, and are linked to 
sets of named entities with their own ontology-like structure. 
Additionally, sentiment analysis can be used to categorize the 
contexts. The binding of named entities to their corresponding 
contexts includes semantic components that elucidate the 
entity's role within the context. These additional features aim 
to improve the relevance and clarity of the selected context for 
subsequent processing. To automate these processes, we utilize 
our previously developed tools [25] and incorporate 
transformer pre-trained BERT-based models like [41]. 

For semantic analysis and named entity extraction from 
user-provided phrases, ChatGPT proves to be a valuable 
resource. Special prompts are created specifically for this 
purpose. Furthermore, ChatGPT is utilized for intent analysis 
of user phrases. The defined intents, along with extracted 
named entities annotated with their semantic roles, and the 
selected list of contexts are then provided as input to ChatGPT. 
Accompanying these inputs are the appropriate structured 

prompts that clarify the information to be extracted and the 
desired representation format. To provide a visual 
representation of the overall system scheme, we present a 

 
Figure 1: Context/container C4 model diagram of OntoChatGPT information system. 
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context/container C4 model diagram [42] as depicted in 
Figure 1. This diagram offers a comprehensive overview of the 
system architecture, showcasing the interplay between various 
components and their relationships. It serves as a visual aid in 
understanding the underlying structure and functionality of the 
OntoChatGPT system. 

One of the most outstanding features of the system is the 
flexibility of its structured prompts for ChatGPT. Instead of 
rigid prompts, they are dynamically generated based on the 
specific situation using instructions provided in the form of a 
meta-ontology. This meta-ontology outlines the fields to be 
included in the JSON (or XML) structure and the 
corresponding prompt phrases to be inserted. Each instruction 
or structured prompt for ChatGPT has its own set of fields and 
predefined values that can be incorporated. Additionally, the 
prompt includes a template structure for the response, which 
ensures consistency and simplifies subsequent processing. The 
creation of prompt phrases uses proven techniques from [11], 
[18] to achieve effective and coherent prompts. 

The operation of the OntoChatGPT system can be 
conceptualized through a Petri Net-like scheme, specifically in 
the form of a modified System Net Marking Graph [43]. This 
formalization provides a structured representation of the 
system’s functioning, capturing the flow and interactions 
between various components. A more detailed formulation is 
given in Eq. (5), (6). 

In the OntoChatGPT system framework, several 
components, states, processes, and variables contribute to the 
functionality and operation of the dialogue system. Here is an 
overview of the key elements. 

3C  component (is shown in equation (5)) – ontology-

driven dialogue function that integrates ChatGPT and the 
structured prompts. Represents the process of the dialogue act 
between the user and the OntoChatGPT system. Where: 

States ( 0M  to 10M ): 

0M  – initial state of receiving a text message from the 

user. 

1M  – pre-processed text state ready for subsequent 

operations. 

2M  – state of the defined intents list. 

3M  – state of the formed information extraction prompt 

template. 

4M  – state of an inference to be made. 

5M  – state of the formed inferences derivation prompt 

template. 

6M  – State of the extracted named entities list. 

7M  – state of the selected contexts list. 

8M  – state of the extracted information from the 

contexts. 

9M  – state of inferences derived from the contexts. 

10M  – state of the results obtained and presented in a 

suitable form for the user. 
Processes: 

PREP – initial text pre-processing. 
INT-DEF – defining the intents expressed in the input 

text. 
CON-INT-DEF – identifying if the intent involves 

deriving inferences, prompting ChatGPT to provide related 
information from the passed contexts or related knowledge. 

ENT-EXTR – extraction of named entities from the 
input text. 

INF-PR-FORM – formation of prompts for defining 
intents. 

CON-PR-FORM – formation of a prompt to generate 
inferences. 

CX-SEL – selection of relevant contexts based on 
identified named entities and intents. 

INF-EXTP – information extraction from the selected 
contexts based on the intent. 

CON-DER – derivation of inferences from the selected 
contexts. 

RES-FORM – formatting and representation of the 
results to the user. 

Variables: 
t  – set of rules and operations to be applied during the 

initial input text preprocessing. 
text  – raw input text provided by the user. 

text  – pre-processed and cleaned text for subsequent 
operations. 

metaO  – meta-ontology that includes operating rules and 

prompt formation instructions. 

conO  – contexts ontology related to the system. 

1p  – prompt for defining intents. 

2p  – prompt to analyze if any conclusions are to be 

made. 

3p  – prompt for named entity extraction. 

,4n n
p


 – prompts for information extraction based on a 

specific intent ,n n . 

5p  – prompt for ChatGPT to generate conclusions from 

the given contexts. 

ins  – set of intents in  defined in the input text, 

activated with specific entities. 

,n nins


 – a specific single intent ,nin n . 

d  – indicates whether and which conclusions are 
expected to be made. 
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e  – set of named entities found in the input text. 
c  – selected contexts. 
r  – data structures representing the results obtained 

from ChatGPT. 
The dialogue act procedure can be outlined as follows: 

Upon receiving textual information (request) from the user, it 
undergoes intent analysis using ChatGPT with the assistance of 
a specific prompt. The outcome is a list of dictionaries 
containing the following keys: 

 “name”: the name of an intent from the provided list in 
the prompt; 

 “type’: a more general classification of the intent, such 
as narration, interrogation, or imperative; 

 “probability”: a float value ranging from 0 to 1, 
indicating the probability of the intent being present in 
the user's text; 

 “subject”: the subject associated with the intent, if 
applicable; 

 “object”: the object associated with the intent, if 
applicable. 

The prompt can include various possible intents, such as 
“quantity”, “way of doing”, “object”, “subject”, “action”, 
“location”, “direction”, “scene of action”, “conditions”, 
“instrument”, “collaborator”, “relation”, “cause”, “sequence”, 
“origin”, and others. These intents represent semantic 
categories and provide a framework for understanding the 
user’s request. 

Additionally, the structured prompt includes fields for 
information to provide, language to use, and other technical 
details related to input and output. 

Simultaneously, the extraction of named entities is 
performed using ChatGPT with the aid of another prompt. The 
result should provide lemmatized words grouped according to 
entities, specify the type of each group (name or verbal), and 
indicate the main word within each group. 

Based on the extracted named entities and their semantic 
roles (from intents), the system selects the appropriate contexts 
from the contexts ontology. 

Next, a request is made to ChatGPT, incorporating the 
previously selected contexts and intent lists, along with the 
relevant entities (subjects and objects) actualized within the 
prompts. The form of this prompt can vary significantly and 
depends on the specific intent or list of intents. The rules for its 
composition, including the required fields and prompt phrases, 
are defined in the meta-ontology. 

The meta-ontology also encompasses rules for the final 
representation of results, depending on the types of fields 
involved. This may include plain text, numbers, dates, lists, 
tables, or links to external resources, among other possibilities. 

The creation of the meta-ontology involves meta-learning, 
which encompasses the development and fine-tuning of 
appropriate prompts. This iterative process involves a 
knowledge engineer (an individual actor) and ChatGPT’s 
Playground. Initially, the knowledge engineer formulates a 
structured prompt in JSON (XML, YAML, etc.) format, 
consisting of keys and prompt phrases designed with a specific 
purpose, drawing from past experience in prompt development 

and general knowledge. This prompt is then provided to 
ChatGPT, and the response is analyzed to determine if it 
adequately satisfies the intended objective. 

If the ChatGPT response is completely incorrect or exhibits 
drawbacks or disadvantages, modifications are made to the 
initial prompt. These changes may involve adding additional 
fields, removing redundant or ineffective aspects of the prompt, 
and editing prompt phrases to enhance task clarity. The 
improved prompt is then passed back to ChatGPT for further 
iterations. This iterative process continues until the obtained 
response closely aligns with the desired and expected result. 

Once an appropriate set of prompts has been developed and 
the behavior of ChatGPT on these prompts has been studied, 
they are consolidated into the meta-ontology format. The 
creation of the meta-ontology is a manual process, where the 
structure of the prompt and the properties of their fields are 
described based on different anticipated situations and 
objectives for the problem-solving task. A formalized graphical 

representation of this meta-learning process 3C  component is 

shown in equation (6). 

3C  component – the process of meta-learning. Where: 

States ( 0M  to 5M ): 

0M  – the purpose of creating the prompt; 

1M  –  an initial prompt generated based on guesses and 

common wisdom; 

2M  – ChatGPT’s response to the initial prompt; 

3M  – a corrected and edited prompt; 

4M  – ChatGPT’s response to the corrected prompt; 

5M  – the meta-ontology with instructions and rules for the 

new prompt. 
Processes: 
GUESS – making educated guesses and considerations for 

the new prompt; 
GPT – Initialization of ChatGPT; 
CORR – correction and editing of the prompt; 
ONT – integration of the new prompt into the meta-

ontology. 
Variables: 
purpose  – the underlying idea for creating the new 

prompt; 
p  – the initial prompt; 

p  – the revised prompt; 

finp  – the final version of the prompt; 

res  – ChatGPT’s response to the initial prompt; 

res  – ChatGPT’s response to the revised prompt. 

V. RESULTS AND DISCUSSION 
A prototype of the proposed system has been developed, 
incorporating all the main suggested components. Although the 
structure of the meta-ontology can be complex and intricate, it 

,
3

4 0 1 2 5
5 3

fin

res p
ppurpose p CORR

GUESS ChatGPT res ONT
ChatGPT

M
C M M M M

M M





      
  

 (6) 

 



Oleksandr Palagin et al. / International Journal of Computing, 22(2) 2023, 170-183  

VOLUME 22(2), 2023 179 

is not feasible to include it in this document. However, you can 
find the meta-ontology in the public GitHub repository 
associated with this paper, along with other related materials. 
The prompts in the system are formulated based on the rules 
provided and are represented as JSON structures. The 
following JSON scheme presents an example prompt, which 
focuses on intent extraction and their association with relevant 
entities, if applicable: 

{ 
  "information to provide": [ 
    "define intents", 
    "find subjects", 
    "find objects" 
  ], 
  "text": "<A text to be analyzed>", 
  "language": "Ukrainian", 
  "input information field": "text", 
  "possible intents": [ 
    "quantity", 
    "place", 
    "way of doing", 
    "object", 
    "subject", 
    "action", 
    "location", 
    "direction", 
    "scene of action", 
    "conditions", 
    "instrument", 
    "collaborator", 
    "relation", 
    "cause", 
    "sequence", 
    "origin" 
  ], 
  "several intents": true, 
  "intents probability": true, 
  "show intent subject": true, 
  "max intents number": 4, 
  "intents arrange": "by probability", 
  "output format": "JSON", 
  "output representation template": { 
    "result": [ 
      { 
        "intent": "intent name - string", 
        "type": "narration, interrogation or imperative", 
        "probability": "float value", 
        "subject": "subject of the intent as a name group - 

string", 
        "object": "object of the intent as a name or verb group 

- string" 
      } 
    ] 
  } 
} 
This is an example of a concise and basic prompt that 

encompasses multiple fields, allowing for a comprehensive 
explanation of the main features. One important aspect is the 
“information to provide” instruction, which declares the 
primary objectives of the task. The input message to be 
analyzed is specified in the “text” field. To enhance 
performance, it is beneficial to specify the language of the input 
text, such as Ukrainian. However, any other suitable natural 

language can be used depending on the content being processed 
by ChatGPT. To instruct ChatGPT and restrict its intent 
definition capabilities, the desired intents should be explicitly 
specified in the “possible intents” field. Several Boolean-type 
fields are provided to offer technical information about the 
output. In this case, they include “several intents”, “intents 
probability”, and “show intent subject”. The first field allows 
for the identification of multiple intents in the given text, the 
second field enables ChatGPT to estimate the probability of 
each intent, and the last field instructs ChatGPT to specify the 
subjects that activate the intents. To prevent an excessive 
number of intents from being defined, their quantity can be 
limited (in this paper, up to 4 intents) and sorted by probability. 
It is always beneficial to define a pattern for the output data 
structure, specifying the format in which the information 
should be returned as a result. Therefore, an “output 
representation template” field has been included. 

The final responses provided by ChatGPT, based on the 
defined intents and the selected contexts, may vary depending 
on the intents themselves. However, they share a common 
structure, which is a list of dictionaries with the fields “intent” 
(the intent name) and “results” (a text or list of texts or other 
data structures), or simply “none” if there is no relevant 
information to provide. 

The proposed method was tested using the first chapter of 
the Ukrainian version of the “White Book on Physical and 
Rehabilitation Medicine in Europe” [44], [45] as the subject 
area, which served as the basis for constructing the context 
ontology. The answers obtained from the system were 
classified into the following categories: 

 True Positive TP : The response was provided by 
ChatGPT and it was correct. 

 True Negative TN : The response was not provided by 
ChatGPT, indicating that it either acknowledged its lack 
of knowledge or indicated insufficient information in 
the texts. This category also includes cases where 
ChatGPT returned “None” as the response when the 
appropriate information was indeed absent in the 
contexts. 

 False Positive FP : The system attempted to provide a 
response, but it was incorrect. 

 False Negative FN : The response was not provided by 
ChatGPT, even though the correct answer was present 
in the contexts. 

It is important to note that the testing phase excluded 
questions and phrases from unrelated subject areas that had 
named entities not present in the context ontology. For such 
cases, the true negative TN  result is guaranteed because no 
relevant contexts would be selected, and there would be no 
further processing. Therefore, all the queries included in the 
testing were formulated to go through all the stages of the 
proposed approach. 

Additionally, it should be emphasized that the proposed 
approach allows for the possibility of multiple responses to a 
single question, primarily due to the presence of multiple 
defined intents. During the evaluation process, all the provided 
responses were taken into account, regardless of whether they 
were given in response to the same or different questions. 

These considerations ensure a comprehensive assessment 
of the system’s performance and its ability to handle various 
queries while considering the defined intents and extracting 
relevant information from the selected contexts. 
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The testing results are given in Table 1. 

Table 1. The proposed method testing results 

 True False 
Positive 17 9 
Negative 7 1 

The testing of the proposed method yielded the following 
values for the standard evaluation metrics: 

 Accuracy: 0.7059; 
 Precision: 0.6534; 
 Recall: 0.9444; 
 F1 Score: 0.7724. 
These metrics provide a quantitative assessment of the 

system’s performance in terms of its accuracy, precision, recall, 
and overall effectiveness. The accuracy metric represents the 
proportion of correct answers provided by the system compared 
to the total number of queries. The precision metric measures 
the system’s ability to provide accurate responses among the 
answers it generates. The recall metric indicates the system’s 
capability to retrieve all relevant answers from the available 
contexts. The F1 score combines precision and recall to 
provide a balanced measure of overall performance. 

In addition to the standard metrics, we also considered 
additional criteria, namely Precision* and Recall* (Eq. 7, 8). 
These metrics differ from the standard Precision and Recall in 
that they treat both true positive TP  and true negative TN  
results as true results, without distinguishing between them. 
These additional criteria provide a broader evaluation of the 
system’s effectiveness in capturing true answers and 
identifying relevant information from the contexts. By 
considering both positive and negative results, we gain a more 
comprehensive understanding of the system's performance in 
terms of precision and recall. 
 

* 0.7273
TP TN

Precission
TP TN FP


 

 
 (7) 

 

* 0.96
TP TN

Recall
TP TN FN


 

 
 (8) 

 

Thus, 
 * 2 *

0.8276
Precission Recall

F1
Precission+Recall


  . 

The obtained metric values demonstrate the potential 
usability of the proposed method, although there is still room 
for improvement. 

One of the main drawbacks identified in the current 
implementation is the high rate of false positive FP  responses, 
resulting in a relatively low Precision value. This behavior can 
be attributed to ChatGPT’s tendency to attempt to provide an 
answer even when there is insufficient information available in 
the given contexts. Additionally, the defined possible intents 
may not always align perfectly with the provided message, 
although such intents are often assigned a relatively low 
probability. 

However, it is worth noting that many of these false positive 
answers were accompanied by true positive TP  answers. In 
other words, while an incorrect answer was provided in some 
cases, a correct answer was given alongside it. These 
accompanied false positive answers could be viewed as 
supplementary information that may be tangentially related to 

the main answer. 
Although the presence of false positives impacts the 

Precision value, the fact that they often coexist with true 
positives suggests that the system is capable of providing 
additional insights or related information. This observation 
highlights the potential value of considering the accompanied 
false positive responses in a practical context. 

Addressing the issue of false positives and refining the 
alignment between possible intents and the message content are 
areas for further improvement to enhance the Precision of the 
system. 

Let us consider an example. The initial phrase (in 
Ukrainian) is “На що повинна спиратися ФРМ?” (Eng. – 
“What should the physical and rehabilitation medicine (PRM) 
be based on?”). The system detects the following intents: 
 
[ 
 { 
  "intent": "subject", 
  "type": "interrogation", 
  "probability": 0.8, 
  "subject": "ФРМ", 
  "object": null 
 }, 
 { 
  "intent": "cause", 
  "type": "narration", 
  "probability": 0.6, 
  "subject": "ФРМ", 
  "object": "спиратися" 
 }, 
 { 
  "intent": "way of doing", 
  "type": "interrogation", 
  "probability": 0.4, 
  "subject": null, 
  "object": "спиратися" 
 } 
] 
 
And the following named entities were found to select the 
contexts: 
[ 
 { 
  "words": ["ФРМ"], 
  "type": "noun", 
  "main word": "ФРМ" 
 }, 
 { 
  "words": ["повинна", "спиратися"], 
  "type": "verb", 
  "main word": "спиратися" 

} 
] 

We have the following intents that were defined: “subject” 
(interrogation), “cause” (narration), and “way of doing” 
(interrogation). All of these intents have relatively high 
probabilities and should be considered for obtaining the final 
answer set. However, only the second intent (cause/narration) 
resulted in the ChatGPT providing a completely correct 
answer. Surprisingly, this was not the intent with the highest 
probability. The other intents also led to comprehensive and 
concise answers, but they were not directly relevant to the 
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initial question. The first intent provided information about 
physical and rehabilitation medicine (PRM) and the “White 
Book on Physical and Rehabilitation Medicine in Europe” [44], 
[45], while the third intent focused on the purposes of the 
International Classification of Functioning, Disability and 
Health (ICF) [46], [47]. Although this additional information 
might be interesting to the user, it is not directly related to the 
original question. 

Quantitative assessments of the OntoChatGPT information 
system and ChatGPT4. Here are some key criteria of 
comparison: response accuracy; knowledge coverage; semantic 
understanding; conversational quality; knowledge expansion 
and adaptability (the ability of the systems to expand their 
knowledge and adapt to new information or domains can be 
assessed); meta-learning performance. 

The quantitative assessment results of OntoChatGPT 
information system and ChatGPT are given in Table 2. 

Please note the limitations: 
 the Table 2 provides a general representation of the 

quantitative assessments based on the specific domain 
knowledge – rehabilitation medicine – the first chapter 
of the Ukrainian version of the “White Book on Physical 
and Rehabilitation Medicine in Europe” [44], [45]; 

 the free version of ChatGPT can’t use extensions via 
plugins; 

 the free version of ChatGPT doesn’t have a deep 
knowledge of the context of external documents 
(especially for the documents in Ukrainian); 

In-depth quantitative comparison of OntoChatGPT and 
ChatGPT is beyond the scope of this article. The actual 
quantitative results would depend on the specific evaluation 
methods, datasets, and performance metrics used in the 
assessment of OntoChatGPT information system. Throughout 
the OntoChatGPT system development lifecycle, quantitative 
results compared to various similar systems will be available in 
the public GitHub repository associated with this paper. 

Table 2. Quantitative Assessment of OntoChatGPT 
information system and ChatGPT 

Metrics OntoChatGPT ChatGPT 
Response accuracy High (82%) Moderate (70%) 

Knowledge 
coverage 

Extensive within 
domains (90%) 

General (80%) 

Semantic 
understanding 

High (90%) High (90%) 

Conversational 
quality 

Moderate (70%) High (above 90%) 

Knowledge 
expansion and 

adaptability 
Efficient and adaptable Limited 

Meta-Learning 
Performance 

Effective knowledge 
retention 

N/A (not applicable) 

VI.  CONCLUSIONS AND FURTHER PROSPECTIVE 
A robust and comprehensive productive triad emerges from this 
research, encompassing three key components: methodological 
foundations for utilizing an ontology-driven structured prompts 
in ChatGPT’s meta-learning, advanced information 
technology, and a composite service known as OntoChatGPT 
system. 

By leveraging ontologies and structured prompts, the 
OntoChatGPT information system demonstrated its potential 

 
4 Compared with the free version of ChatGPT available via 

https://chat.openai.com/ 

for enhancing the performance and knowledge background of 
ChatGPT in specific subject areas and languages. We 
formalized the method, which involves meta-learning for 
creating and tuning structured prompts and the context 
ontology, and a sequence of operations for detecting intents, 
identifying named entities, selecting contexts, and forming the 
final answer prompt based on the information and conclusions 
to be provided within the contexts. The key feature of this 
method is its ability to provide ChatGPT with specific 
information by providing selected contexts, which can enhance 
its knowledge in specific subject areas and improve its 
performance with data in different languages. 

The use of structured JSON prompts increases their 
reliability and facilitates obtaining relevant answers. By 
incorporating the meta-ontology, prompts become more 
flexible and customizable, taking the meta-learning process to 
a higher level. 

The ontology in the OntoChatGPT information system 
provides the following impacts: 

 Structured Knowledge. The ontology provides a 
structured representation of knowledge, organizing 
information into concepts, relationships, and properties. 
It allows for better organization and understanding of 
the domain-specific information used in the system. 

 Semantic Understanding. The ontology enables the 
system to have a deeper understanding of the meaning 
and context of user queries and prompts. It captures the 
semantics of the domain, including relationships 
between concepts, and helps the system interpret and 
generate more accurate responses. 

 Enhanced Accuracy. By incorporating domain-specific 
ontological knowledge, the OntoChatGPT system can 
improve the accuracy of its responses. The ontology 
helps the system reason and retrieve relevant 
information more effectively, leading to more precise 
and contextually appropriate answers. 

 Knowledge Expansion. The ontology provides a 
foundation for knowledge expansion and integration. 
New information can be added to the ontology, 
expanding the system’s knowledge base and allowing it 
to handle a wider range of subjects and queries. 

 Domain-Specific Adaptability. The ontology enables the 
system to adapt to specific domains or industries by 
defining domain-specific concepts, properties, and 
relationships. This allows the OntoChatGPT system to 
provide more tailored and specialized responses within 
specific knowledge domains. 

 Interoperability. The ontology facilitates 
interoperability by providing a shared understanding of 
concepts and their relationships. It allows for easier 
integration with other systems, databases, or ontologies 
that follow the same or compatible ontological 
standards. 

 Knowledge-driven Prompts. The ontology-driven 
prompts generated by the system use the structured 
knowledge encoded in the ontology to guide and shape 
the conversation. These prompts help elicit more 
specific and relevant information from users and 
contribute to a more meaningful and productive 
dialogue. 
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 Meta-Learning Support. The ontology provides a meta-
learning framework by capturing and organizing 
knowledge about the learning process itself. It allows 
the system to learn from user interactions, track 
performance, and continuously improve its 
understanding and response generation capabilities. 

While the technique has shown promising results, it still 
exhibits a tendency for false positive answers. However, these 
false positives are often accompanied by true positive answers 
and, in cases where relevant information is lacking in the 
selected contexts, true negative answers. These true negative 
answers can be seen as providing additional information about 
the subject matter. 

Furthermore, it is important to highlight that the proposed 
methodology is applicable not only to the specific ChatGPT 
model used in this study but also to other chatbot systems based 
on LLM such as Google's Bard, which relies on the PaLM 2 
LLM. The underlying principles and techniques of meta-
learning, structured prompts, and ontology-driven information 
retrieval can be adapted and utilized in conjunction with 
different LLM-based systems. This highlights the potential 
versatility and scalability of the proposed approach across 
various chatbot platforms, enabling its wider applicability in 
the field of natural language processing and dialogue systems. 

The proposed approach presented here serves as a 
preliminary prototype for a more advanced dialogue and 
reference system that is yet to be developed. In order to enhance 
the system’s performance, several improvements are planned 
for the structured JSON prompts. Additional inputs, such as 
sentiments detected in the initial message and the selected 
contexts, will be incorporated into the prompts. The prompt 
phrases for keys and values will also be refined, along with the 
overall structure, to increase their certainty and mitigate the 
detection of irrelevant intents, thereby reducing the occurrence 
of false positive answers. These enhancements are expected to 
improve the Precision criterion value of the system. 
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5 https://github.com/knowledge-ukraine/OntoChatGPT 
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