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 ABSTRACT Cryptographic techniques in cyber security can be categorized into symmetric and asymmetric. 
Among asymmetric cryptographic techniques, the RSA algorithm is more popular and considered as secured. 
Since, RSA uses the common modulus in both encryption and decryption, this modulus is openly available for the 
public which makes it exposed for attack. Its security is based on the assumption of large integer factorization 
problem, but this could leave it open to different cryptanalysis attacks: low private exponent attack, Shor’s 
polynomial-time quantum algorithm, quantum inverse Fourier transform and phase estimation.  To address these 
shortcomings, this paper proposes a public-key security algorithm called Hidden Real Modulus RSA (HRM-RSA) 
which hides real modulus by masking it. The public mask modulus which is a pseudo random masking number is 
derived from real modulus. Then, this derived public mask modulus is introduced in a public key component; as a 
result, a real modulus is kept hidden from the public unlike the case in RSA. Encryption is done using this public 
mask modulus and the decryption process is done using a private hidden real modulus. For performance analysis 
Net bean IDE 8.2 is used, and the proposed algorithm is compared with state-of-the-art algorithms: RSA, 
ESRKGS, and MRSA based on security strength, time complexity, key generation time, encryption speed, and 
decryption speed. The performance analysis shows that HRM-RSA is less complex but highly secured than 
existing algorithms. It improves key generation time of ESRKGS, and MRSA by 311%, 42%; encryption time of 
RSA, ESRKGS, MRSA by 0.7%, 139%, 735%; decryption time of RSA, ESRKGS, MRSA by 3%, 138%, 799%, 
respectively. 
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I. INTRODUCTION 
ODAY, secure online communication has become an 
enormous concern in the untrusted world of the Internet, 

where there are several effective security attackers. Cyber-
attacks occur quickly and unfold across the world in minutes 
not depending on borders, geography, or national jurisdictions 
[1]. There are several proposed mechanisms to ensure data 
security on the Internet, which includes: Intrusion Detection 
System (IDS), Username, Password, Intrusion Prevention 
System (IPS), Firewall, Biometric, Proxy, and Cryptography. 
Cryptography is a cyber-security mechanism which provides 
data Confidentiality, Integrity, and Authenticity. While 
traditionally cryptographic algorithms are divided into three 
categories Keyless, Symmetric key and Asymmetric key, 
modern cryptographic techniques can be categorized into 
asymmetric and symmetric key cryptosystems [2], [3], [4], [5].  

In symmetric-key the challenge is  secure key distribution 
because of eavesdropping during key sharing; as a result, 
numerous keys are needed: for n users’ n*(n-1)/2 keys required, 

whereas in asymmetric key the challenge is on the need for 
third party, i.e., Certificate Authority(CA) [2], [3], [4], [5].  

RSA cryptography, which is one of the most commonly 
used asymmetric cryptographic techniques today, was 
developed by Rivest, Shamir, and Adelman in 1978. RSA 
cryptography is based on the generation of two large-random-
prime numbers p, and q of equal bit-size and the generation of 
random exponents d and e satisfying Euler’s function as 
described in Equation (1) [4], [6], [7], [8]. 
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Although RSA is considered as a popular and secured 

public key cryptography technique, it could be open to different 
security attacks because it uses a common real modulus during 
the encryption-decryption process. To fill this gap, this paper 
proposes a new cryptographic algorithm called Hidden Real 
Modulus RSA (HRM-RSA) algorithm. 

T
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The rest of the paper is organized as follows: Section 2 
discusses related work methods, contributions, and gaps. The 
proposed algorithm is introduced in Section 3. Section 4 
presents the mathematical proof of the proposed algorithm. 
Section 5 presents a performance analysis of HRM-RSA with 
respect to existing work. Finally, Section 6 presents a 
conclusion and future work. 

II. RELATED WORK 
Rivest et al. (1978) proposed a novel asymmetric cryptosystem 
method called RSA for protecting the confidentiality of data. It 
is the first algorithm used for both digital signature and data 
encryption [4], [9]. It uses two large prime numbers p and q to 
generate private and public key pairs. As depicted in Algorithm 
1, in the RSA cryptosystem there are three main procedures, 
namely: key generation, encryption, and decryption processes. 
The decryption key exponent is different from the encryption 
key exponent but has a mathematical relationship [2], [3].  

The major drawback of RSA algorithm is that its security is 
based on the assumption of the difficulty of integer 
factorization which  does not  work in massive parallel 
computational quantum computers: D-Wave quantum 
computer attacks and Shor’s quantum polynomial-time 
algorithms based on the quantum inverse Fourier transform, 
and phase estimation [10], [11], [12], [13]. The reason for the 
possibility of RSA factorization is that its common real 
modulus n property is constant, i.e., it is a product of two prime 
numbers. Other attacks on RSA include Wiener’s continued 
fraction attack, lattice reduction and Coppersmith’s method, 
weak public and private exponent attacks, large private 
exponent attack, combined attack by sat-approach, advanced 
timing attack, ion fault injection attack, common modulus 
attack, blind signature attack, and double encryption attack [2], 
[3], [5], [10], [14], [15], [16], [17], [18], [19], [20], [21]. 

Algorithm 1: RSA Algorithm [9] 

RSA_Key_Generation ()  
INPUT: Prime integers’ p and q. 
OUTPUT: Find public key exponent (e), private key exponent (d), 
and common modulus (n).  
Begin  
Procedure (p, q, e, d, and n)  

1. Generate two random distinct prime integers’ p and q 
2. Calculate n ← p * q 
3. Calculate Euler Ø (n) ← (p-1) * (q-1)  
4. Generate random public key exponent e such that,   

        gcd (e, Ø(n))=1, 1<e <Ø (n)  
5. Calculate private  key exponent d, such that,  
  d← e-1mod Ø (n) 

End Procedure 
End 
RSA_Encryption ()  
Input: Select plain text (T), public key exponent (e), and common 
modulus (n).  
Output: Find cipher text (C).  
Begin  

  Procedure (T, e, n, and C)  

C ← (T)e mod n 
   End Procedure 
End 
RSA_Decryption ()  

Input: Select cipher (C), private key exponent (d), and common 
modulus (n).  
Output: Find plain text (T).  
Begin  

Procedure (T, d, n, and C)  
T ← Cd mod n  

End Procedure 
End 

 
J. Jaiswal et al. (2014) proposed an algorithm called 

“Reformed RSA algorithm based on Prime Number” to secure 
data communication over the network and to increase speed 
performance of the RSA algorithm [22]. This method uses the 
common modulus n which is a multiplication result of four 
prime numbers p, q, r, and s, and offline storage method.  As a 
result, algorithm speed is increased through offline storage of 
public key in a database which is identical in all networks 
without any improvement on the security of standard RSA. The 
limitation of this algorithm, like standard RSA, is that its 
encryption and decryption keys are dependent on the common 
modulus; therefore, it can be easily unlocked. Other drawbacks 
include a distributed database (DDB) update time and DDB 
attack [22]. 

M. Thangavel et al. (2015) proposed another enhanced 
method called “An Enhanced and Secured RSA Key 
Generation Scheme (ESRKGS)” based on four randomly 
generated prime numbers to increase the time required to 
factorize these primes [23]. The computation of public key and 
private key exponents depends on the value of n, which is the 
product of four prime numbers. It enhanced the security of RSA 
by reducing direct attack using larger exponents. The limitation 
of this approach includes encryption, and decryption time is 
higher than the original RSA, and most attacks on RSA can be 
applicable to this algorithm too [23]. Erkam Lüy et al. (2016) 
showed that ESRKGS has a similar security level as traditional 
RSA [24], [25]. 

S. Mathur et al. (2017) proposed another enhanced method 
called “Analysis and Design of Enhanced RSA Algorithm to 
Improve the Security”. It uses four prime numbers and multiple 
public keys with the k-nearest neighbor algorithm [25]. The 
limitations of this approach are the following ones: it has higher 
key generation, encryption, and decryption time than original 
RSA as it encrypts and decrypts character by character and 
incorporates a looping process; it is compatible only for text 
files and special characters like @, #. $, %, &, and *.   

Panda & Chattopadhyay (2017) proposed a method called 
“Hybrid security algorithm for RSA cryptosystem based on 
four random prime numbers”, which is based on the ESRKGS 
algorithm and uses the random modulus [7]. The limitations of 
this algorithm are the following ones: most of the time the 
correct random modulus number w may not be found; it has 
high key generation time (due to exponentiation and 
modulation operations which do not add any security feature to 
the system); a double encryption attack (see Section 5, 
Subsection 5.5) and generating alternative private key 
exponents is possible to the system since it uses common 
modules.  

M.A. Islam et al. (2018) proposed a modified method called 
a “Modified and Secured RSA Cryptosystem based on n prime 
numbers (MRSA)” which improves the security of the standard 
RSA algorithm by using four distinct prime numbers and two 
different encryption-decryption key pairs as shown in 
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Algorithm 2 [6]. In this cryptosystem, modulus n is the product 
of p, q, r, and s. To produce key pairs, public keys e and f have 
been selected randomly and private key exponents d and g are 
the multiplicative inverse of each public key exponents in 
modulo n. Key exponents are dependent on common modulus 
n. Since the process of encryption and decryption depends on 
common modulus n, it is easy to unlock the system. The 
limitation of this approach includes high encryption and 
decryption time when compared to other related work; 
factorization of common modulus n to unlock the system is not 
difficult; the cipher text size, which is a major concern in data 
transmission, is doubled when compared with RSA. 

Algorithm 2: MRSA Algorithm [6] 

MRSA_Key_Generation ()  
INPUT: Prime integers’ p, q, r, and s. 

OUTPUT: Find public key exponents (e, and f), Private key 

exponents (d, and g), and Common Modulus (n).  
Begin  
Procedure (p, q, r, s, e, f, d, g, and n)  
1. Generate four random unique prime integers’ p, q, r, and s 
2. Calculate n ← p * q * r * s 
3. Calculate Euler’s Ø (n) ← (p-1) * (q-1) *(r-1) * (s-1) 
4. Generate distinct public key exponents e and  f such that,  

    gcd (e, Ø (n)) = 1, 1< e < Ø (n) and  gcd (f, Ø (n)) = 1,  
   1< f < Ø (n) 
5. Calculate private key exponents d and g such that,  

    d ← e-1 mod (Ø (n)) and g ← f -1 mod (Ø (n)) 
End Procedure 
End 

MRSA_Encryption ()  
Input: Select Plain text (T), public key exponents (e, f), and 

common modulus (n).  

Output: Find Cipher text C.  
Begin  
Procedure (T, e, f, n, and C)  

C ← (T e mod n) f mod n 
End Procedure 
End 

MRSA_Decryption ()  
Input: Select cipher text (C), private key exponents (d, g), and 

common modulus (n).  

Output: Find plain text (T).  
Begin  
Procedure (T, d, g, n, and C)  

T ← (C g mod n) d mod n 
End Procedure 
End 

 
A review of related work shows that RSA, ESRKGS, and 

MRSA are more reliable algorithms than other related work. 
Nevertheless, even these algorithms have security and 
execution performance drawbacks which could be addressed. 

Hence, to address these shortcomings, this work attempts to 
propose a new asymmetric cryptographic algorithm called 
Hidden Real Modulus RSA (HRM-RSA) and its simulation 
result is compared with state-of-the-art related works: 

ESRKGS, MRSA and with common and popular algorithm 
RSA. 

III. PROPOSED WORK 
In this section, we present the proposed Hidden Real Modulus 
RSA (HRM-RSA) Algorithm. 

Generally, all existing related works use a common real 
modulus for encryption and decryption which makes them 
unsecured. Their security strength depends on the difficulty of 
large integer factorization problem which will not be a problem 
for D-Wave quantum computer attacks, Shor’s integer 
factorization and polynomial-time factorization algorithms 
[10], [11] and [12], [13]. To avoid these limitations a new 
security parameter called public mask modulus M which is 
computed from unpredictable random integer number m and a 
real modulus n is introduced so as to hide a real modulus n from 
the public.  

Like RSA, the basic steps used in this proposed algorithm 
are key generation, encryption, and decryption processes with 
our new modifications in the processes. The sixth and seventh 
steps in our algorithm key generation process differ from RSA 
and other related works. Another difference is that a common 
real modulus n is used for both encryption and decryption in 
RSA and existing related works, but in HRM-RSA a real 
modulus n is kept private to be used only for decryption 
whereas encryption is done with a new parameter called public 
mask modulus M. 

 In the key generation process, steps to be computed by the 
receiver are as follows: First, two large prime numbers p and q 
are generated randomly. Second, the product of these two large 
prime numbers p and q generates the real modulus which in this 
work called hidden real modulus n. Third, Euler’s Ø (n) is 
calculated by multiplying p-1 with q-1. Fourth, the prime 
encryption exponent (e) will be randomly generated between 1 
and Ø (n) in which the Greatest Common Devisor (GCD) of e 
and Ø (n)) is 1. Fifth, the decryption exponent (d) is computed 
by calculating inverse of (e) mod Ø (n). Sixth, a large 
multiplayer number m will be randomly generated. This 
multiplier m can be any type of integer with any bit size. 
Seventh, a public mask modulus M is computed by multiplying 
a real modulus n by a random multiplayer number m to hide the 
real modulus. This masking process hides the real modulus n 
from the public. As a result, the real modulus n becomes 
private, unlike common modulus in RSA. Due to this, in this 
paper a real modulus n is referred as hidden real modulus n. 
This method of producing the public mask modulus M from 
any type of random number m makes it unpredictable. This 
unpredictable property of the public mask modulus M will 
challenge cryptanalysts from designing cryptanalysis algorithm 
to unlock HRM-RSA. Finally, the receiver makes public key 
components (e, and M) available to the correspondents while 
private key components (d, n) are kept secret.  

During encryption step: First, the sender encrypts the plain 
text T using public key exponent e and public mask modulus 
M. The bit length of plain text T should be smaller than the bit 
length of n and M. Then, the encrypted text C will be sent to 
the receiver. Since the encryption is not done using a real 
modulus, this cipher text is a false cipher text. This technique 
challenges attackers from conducting attacks based on cipher 
text like brute-force attack. 

During the decryption step: First, the receiver receives false 
cipher text C delivered from the sender and decrypts to genuine 
cipher C1 by removing a mask using a hidden real modulus n. 
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Then, the receiver decrypts this genuine cipher text C1 into the 
original plain text T using private key exponent d and hidden 
real modulus n.  

Key Generation and En/Decryption architecture of the 
proposed algorithm is basically shown in Algorithm 3. Fig. 1 
and Fig. 2 farther illustrate Key Generation and En/Decryption 
architecture of the proposed algorithm, respectively.  

Algorithm 3: HRM-RSA Algorithm  

HRM-RSA_Key_Generation ()  
INPUT: Prime numbers (p, q), and multiplier number m.  
OUTPUT: Find public key exponent (e), private key 

exponent (d), and modulus numbers (n, M) in bit-length.  
Begin  
Procedure (p, q, m, e, d, n, and M)  

1. Generate two random distinct prime numbers p and q 
within bit-length/2 
2. Compute a real modulus n such that,    n ← p * q 
3. Calculate Euler Ø(n) such that,    Ø(n)← (p-1)*(q-1)  
4. Randomly generate a prime public key exponent e, such 

that,  gcd (e, Ø (n)) = 1, 1< e< Ø (n)  

5. Calculate private key exponent d, such that, d← e-1 mod 
Ø (n)   
6. Generate a random multiplier number m within any bit-

length, such that, m ← RNG (m.length, rand), m>1;  
7. Compute a public mask modulus M, such that, M ← m 
* n; 
End Procedure  
End 

HRM-RSA_Encryption ()  
Input: Select plain text (T), public key exponent (e), and 

public mask modulus (M).  

Output: Cipher text (C).  
Begin  
Procedure (T, e, M, and C)  

C = (T) e mod M 
End Procedure  
End 

HRM-RSA_Decryption ()  
Input: Take False Cipher (C), private key exponent (d) & 

hidden real modulus (n).  

Output: Find plain text (T).  
Begin  
Procedure (C, d, n, and T)  

C1= C mod n // Since (C mod M) mod n = C mod n 
where M is the multiple of n, This mod removes the mask 
and results genuine cipher text C1. This also improves 
speed performance as modulation is performed before 
exponentiation.  
T =C1 d mod n 
End Procedure  
End 
Fig.1 shows a flow chart for key generation steps. As shown 

in this figure, HRM-RSA algorithm takes two large random 
prime numbers p and q generated by Random Prime Number 
Generator function (RPNG), and random multiplier m 
generated by Random Number Generator function (RNG) as 

input. Finally, it generates the public key (KU) = (e, M) and the 
private key (KR) = (d, n) as output. 

 

Figure 1. HRM-RSA Key Generation Architecture  

Fig.2 shows a flow chart for the encryption, and decryption 
process of HRM-RSA. This flowchart shows that in the 
encryption process Alice takes the public key component of 
Bob which are KU= (e, M) and her plain text T of which bit 
length is less than the bit length of n and M as input and 
produces a false cipher text C to be transmitted to the receiver 
Bob using encryption algorithm of HRM-RSA. Public mask 
modulus M is used for masking both genuine cipher text C1 
(which was computed as C1=T e mod n in RSA) and a hidden 
real modulus n. When Alice uses a public mask modulus M to 
encrypt plain text T, a genuine cipher C1 becomes hidden in 
false cipher C. 

As Bob receives false cipher text C, he starts the decryption 
process using our HRM-RSA decryption algorithm and his 
private key components KR= (d, n). In the decryption process, 
first, he computes genuine cipher C1 using false cipher C 
received from Alice and his hidden real modulus n. Then, he 
uses his private key component KR= (d, n), and genuine cipher 
text C1 as input and recovers the copy of original plain text T 
as output. 

 

Figure 2. HRM-RSA Enc/Decryption Architecture  
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Let us discuss a simple example using proposed algorithm.  

Key Generation: 
Assume, Bob chooses p = 13, q = 11 and calculates 

hidden real modulus n= 143, Ø (n) = (13-1) (11-1) or 120. 
Bob chooses positive integer m = 5 and calculates M= n * 
m = 715.   

Now he chooses two exponents which are e and d from 
Z120*. If he chooses e = 23 then d is 47. Note that e and d 
are inverses of each other, i.e., e * d mod 120=1. 

Encryption:  
Now imagine that Alice needs to transmit the plaintext 

T= 6 to Bob, she uses the public exponent 23 and public 
mask modulus 715 of Bob to encrypt the plain text 6.  
C=623 mod 715 = 789730223053602816 mod 175  = 271 

Decryption:  
Bob uses the hidden real modulus n = 143 to decrypt a 

false cipher text C = 271 received from Alice to genuine 
cipher C1. Then he uses the private exponent d = 47 and 
hidden real modulus n = 143 to decrypt a genuine cipher 
text C1 to plain text T.  

C1= 271 mod 143=128 
T = 12847 mod 143 = 6 

IV. MATHEMATICAL PROOF OF HRM-RSA ALGORITHM 
In this section, we have proved that the encryption and 

decryption process of HRM-RSA are inverses of each other 
using the 2nd version of Euler’s theorem.  

If n = p*q, a<n, and if k is an integer, then a k*Ø(n) +1 

=a (mod n), Ø (n) is the totient function.   

Additionally, we have used the congruence of modular 
properties.  

a kr mod n =  (a k mod n) r mod n 

Assume that the plain text delivered to Bob from Alice is 
T1 and prove that it is equal to plaintext T sent by Alice as 
encrypted cipher text C. 

C= T e mod M; where M=n*m, mεZା 

T1=C d mod n= (T e mod M) d mod n  

T1= ((T e mod M) d mod M) mod n; where n|M and 

n<M. 

T1= T e d (mod M mod n ) //congruence of 
modular properties 

T1 = (T e d mod n) where n|M and n<M therefore fields 

size is n. 

T1=T e d (mod n) 

e * d = k * Ø (n)+1; i.e.,d ande are inverse of each 

other in moduloØ (n) 
T1= T e d (mod n) = T k*Ø (n) +1 mod n 
T1= T k*Ø (n) +1 mod n = T mod n =P // Euler’s 

theorem (2nd version) 
P1 = P 
 
 

V. IMPLEMENTATION AND PERFORMANCE ANALYSIS 
HRM-RSA is implemented using Java program on Net Beans 
IDE 8.2 programming environment, running on Intel(R) 
Core(TM) i5-6200U CPU @ 2.30GHz (4 CPUs) and 4 GB 
RAM. To conduct our experiment, four distinct random prime 
numbers from each of six different bit sizes: 28-bit, 56-bit, 128-
bit, 256-bit, 1024-bit and 2048-bit are randomly generated. 
Since RSA and HRM-RSA need only two prime numbers as 
input, two of the four distinct random prime numbers for each 
of the six different bit sizes are used. On the other hand, 
ESRKGS and MRSA use four distinct prime numbers as input 
from each bit size. To simulate the speed performance of the 
algorithms, we have used six different bit-size and distinct 
combinations of randomly chosen prime numbers. To make our 
result analysis more reliable, we have executed the algorithms 
five times for each input and the average execution time is 
considered. 

 

A. KEY GENERATION TIME OF ALGORITHMS 
Table 1 shows the average key generation time of the 
algorithms for each bit length. As shown in Table 1, the key 
generation time cost of HRM-RSA is better than other state-of-
the-art algorithms, except RSA. 

Table 1. Summary of Key Generation Time (in Seconds) 

 
 
Based on key generation time due to Table 1, we have 

organized comparison Table 2. Table 2 shows that the key 
generation performance of HRM-RSA is 10% less than RSA; 
on the other hand, it improves key generation performance of 
ESRKGS and MRSA by 311% and 42%, respectively.   

Table 2. Key Generation Time Comparison of HRM- RSA 
with RSA, ESRKGS and MRSA 

Bit 

Length 

Algorithm 

RSA ESRKGS MRSA 

28bit -8% -4% 33% 
56bit -11% -8% 25% 
128bit -9% -7% 45% 
256bit -9% 3% 45% 
1024bit -9% 270% 49% 
2048bit -14% 1613% 55% 
Average -10% 311% 42% 

 
Fig. 3(a) and Fig. 3(b) are generated from key generation 

time Table 1. To show the result in line with bit length increase 
in more detail, we have presented bit length from 28 to 1024 in 
Fig. 3(a) and from 28 to 2048 in Fig. 3 (b). According to Fig. 
3, we can see that the key generation speed performance of 
HRM-RSA is slightly less than RSA. However, the key 
generation time performance of HRM-RSA is far better than 
ESRKGS and MRSA. Therefore, HRM-RSA key generation is 
less complex than MRSA and ESRKGS because it uses simple 

Bit 

Length 

Algorithms 

RSA ESRKGS MRSA HRM -RSA 

28bit 0168798005 0.17756215 0.245325576 0.184443163 
56bit 0.163752084 0.169519753 0.230654326 0.184122907 

128bit 0.166129807 0.170200627 0.26433909 0.182154953 

256bit 0.165257958 0.18646317 0.26223776 0.180688844 

1024bit 0.175072555 0.71512838 0.288558782 0.193203724 

2048bit 0.185033156 3.701661608 0.334886596 0.216115685 
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computation which is real modulus hiding unlike others which 
use complex computation adding more exponentiation and 
modulation operations. 

 

 
(a) 

 
(b) 

Figure 3. Analysis of Key Generation Performance (Seconds) 

B. ENCRYPTION TIME OF ALGORITHMS 

Table 3 shows the average encryption time of the algorithms 
for each bit. The table shows that our HRM-RSA algorithm is 
far better than other state-of-the-art algorithms. 

Table 3. Summary of Encryption Time (in Seconds) 

Algorithm/ 
    Bit size 

RSA ESRKGS MRSA HRM-RSA 

28bit 0.001664339 0.002098514 0.003099472 0.00162628 
56bit 0.002234535 0.003376719 0.004664056 0.002316796 
128bit 0.003467855 0.005904289 0.007825139 0.003617956 
256bit 0.006172235 0.013026965 0.03611693 0.005847371 
1024bit 0.11656283 0.462179563 2.010568515 0.121403782 
2048bit 0.939976892 3.411535596 18.53038885 0.869988403 

 
Based on encryption time due to Table 3, we have analyzed 

Table 4. Table 4 shows that HRM-RSA has improved 
encryption performance of traditional RSA, ESRKGS, and 
MRSA by 0.7%, 139%, and 735%, respectively. 

Table 4. Encryption Time Comparison of HRM-RSA with 
RSA, ESRKGS and MRSA 

Algorithm/ 
    Bit size 

RSA ESRKGS MRSA 

28bit 2% 29% 91% 
56bit -4% 46% 101% 
128bit -4% 63% 116% 
256bit 6% 123% 518% 
1024bit -4% 281% 1556% 
2048bit 8% 292% 2030% 
Average 0.7% 139% 735.3% 

 
Based on Table 3, we have analyzed Fig. 4 (a) and 4(b).  

These figures show that HRM-RSA performs better than other 
state-of-the-art algorithms; especially the performance 
difference from ESRKGS and MRSA is significant. Therefore, 
the encryption time performance of the HRM-RSA algorithm 
is better than the state-of-the-art algorithms.  

 

 
(a) 

 
(b) 

Figure 4. Analysis of Encryption Performance (Seconds) 

C. DECRYPTION TIME OF ALGORITHMS 
Based on decryption time collected from the execution of each 
algorithm, we have summarized the average decryption time of 
the algorithms for each bit as shown in Table 5.  

Table 5. Summary of Decryption Time (in Seconds) 

Algorithm/ 
    Bit size 

RSA ESRKGS MRSA HRM-RSA 

28bit 0.00168917 0.00218299 0.002762321 0.00166135 
56bit 0.00238831 0.00346777 0.004531875 0.00215842 
128bit 0.00368699 0.00523331 0.008751857 0.00360558 
256bit 0.0059042 0.01308115 0.03492346 0.00592502 
1024bit 0.1171262 0.45592054 2.215529872 0.11901915 
2048bit 0.89804749 3.30941532 19.79810731 0.85252463 
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Based on decryption time due to Table 5, we have analyzed 
Table 6. Table 6 shows that in decryption speed performance, 
HRM-RSA outperforms the-state-of-the-art algorithms by 3%, 
138%, and 799% than RSA, ESRKGS, and MRSA, 
respectively. This makes HRM-RSA cost-effective.  

Table 6. Decryption Time Comparison of HRM- RSA with 
RSA, ESRKGS, and MRSA 

Algorithm/ 
    Bit size 

RSA ESRKGS MRSA 

28bit 2% 31% 66% 
56bit 11% 61% 110% 
128bit 2% 45% 143% 
256bit 0% 121% 489% 
1024bit -2% 283% 1761% 
2048bit 5% 288% 2222% 
Average 3% 138% 799% 

 
Based on decryption time due to Table 5, we have analyzed 

Fig. 5(a) and Fig 5(b). These figures show that the decryption 
speed of HRM-RSA is better than other state-of-the-art 
algorithms.  Especially, as the bit length of prime numbers 
increase our algorithm performance increases more 
significantly.  

 
(a) 

 
(b) 

Figure 5. Analysis of Decryption Performance (Seconds) 

D. TIME COMPLEXITY OF ALGORITHMS 

Based on the complexity of MILLER-RABIN computed by 
M.A. Islam et al. (2018) [6] and Table 1 shown in this section, 
MRSA is more complex than RSA whereas HRM-RSA has less 
complexity than other related work except for traditional RSA. 
Therefore, HRM-RSA requires less computing resources than 
other existing works. 

E. SECURITY ANALYSIS OF ALGORITHMS 

Double Encryption Attack against RSA 
In our work Double Encryption means the process of applying 
the public keys with the encryption algorithm both at the sender 
and receiver side, whereas Double Encryption Attack (DEA) 
means the plain text is recovered back when the receiver 
applies the public keys instead of private keys as described 
below: 

Since common modulus is Public in Standard RSA, it is 
possible to use public key exponent both at the sender and at 
the receiver side to get the same result of its inverse called 
private key exponent by man in the middle (MITM) attack 
using Double Encryption Attack as follows: 

Let C = cipher text, T= plain text, e = public key exponent, 
d = private key exponent and n = common modulus. 

Sender Side: C=T e mod n, Receiver Side: T=Cd mod n. 
T=Cd mod n but d is private so MITM can use T= Ce mod 

n. because ‘e’ and ‘d’ are inverses of each other within this 
common modulus n as shown in examples 1 and 2 below. For 
simplicity, we have used small integers. 

Example 1: Assume:  Ku= (5, 21), C=16, T=? 
Attacking:  T= (16)5 mod 21=4 
Checking:  C=T e mod n = (4)5 mod 21=16 

Example 2:  Assume:  Ku= (5, 35), C=17, T=? 
Attacking: T= (17)5 mod 35=12 
Checking: C=T e mod n = (12)5 mod 35=17 

Mathematical Theorems to Unlock RSA 
a. Check primness of a number p  
 P is prime if it is not divisible by any primes 

<=ඥp  

b. Find all prime numbers less than n 
 Write all number s b/n 2 and n 
 Check if any number m is divided by any prime 

< √n  (Sieve of Eratosthenes) 
c.   Euler’s phi-Function; used to find co-prime 

numbers to n  
∅(m × n) = ∅(m) × ∅(n) = (m − 1)(n − 1) 

Find any prime number p such that √n
య  ∛n <= p < √n and 

divider of n (Sieve of Eratosthenes), as one of the prime 
numbers lays within this range and key length of p is the key 
size of n–1, check ‘p’ from √n   -1. 

Find another prime q =n/p, ∅ (n) = (p-1) (q-1). Then private 
key exponent (d) =e-1mod ∅ (n), as key exponent e is known to 
the public. 
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Example 1: Let n=33, ∅ (n) =?  
Answer:  
Find the range of one of the prime numbers let P, such that 

∛33 <= P<√33  3<= P <5. 
Find a prime number within a range and devisor of n  
 Check p=4 ---not prime; therefore, go to next p=p-1  
 Check p=3 ----yes (therefore 1st prime found) 
 Find q=n/p=33/3=11----- 2nd prime found 
 Find ∅(n) =(p-1)(q-1)=(3-1)(11-1)=20. 

Example 2: Let n=13,221  
Answer:  
Find the range of one of the prime numbers let P, such that 

∛13221 ≤ P < √13,221; 23 ≤ p < 114. 
Check which number in a range is a prime and devisor of 

13,221 
 Check p=113---yes (1st prime found) 
 Find 2nd prime q=13,221/113=117 
 Find ∅(n) =(p-1)(q-1)=(113-1)(117-1)=12,992. 
However, we have also computed a private key exponent d 

of RSA using Fermat’s theorem as d≡ e-1 mod ∅ (n). Using 
Fermat’s theorem version 1 and 2, we have found that d=e-1 
mod ∅ (n) ≡ e ∅ (n)-1 mod ∅ (n) from public key exponent e and 
common modulus n. 

Procedures to Unlock RSA 
We designed attacking procedures for RSA as shown in 

step 1 and 2 below based on the mathematical theorems shown 
in subsection 5.5.2. (Remember Ku = (e, n) is Public). 

Step 1. Find ∅(n) : 

(a). Find all Primes < √n  starting from √n − 1 (Sieve of 
Eratosthenes) 

(b). Select a prime as P if divider of n  i.e. GCD(P, n)=P 
(c). Find q=n/p 
(d). Calculate ∅(n)=(p-1)(q-1) (Euler’s phi-function). 
 

Step 2. Find d=e-1 mod ∅(n) using 
(a). e∅(n)=1 mod ∅(n) (Euler’s theorem) 
(b). e∅(n)-1=e-1 mod ∅(n) (divide both sides by e) 
(c). e-1= e∅(n)-1 mod ∅(n) (Fermat’s little theorem) 
(d). de= 1 mod ∅(n) (private exponent generation 

algorithm) 
(e). d= e∅(n)-1 mod ∅(n) (substitute e-1 with Fermat’s little 

theorem). 

Experimental Output  
We have implemented java program to unlock RSA based 

on unlocking procedures depicted in subsection 5.5.3. 
Experimental sample Java outputs for 56 bits and 80 bits are 
shown in Fig. 6 (a) and (b), respectively. 

 

 
(a) 

 

(b) 

Figure 6. Experimental sample Java outputs 

HRM-RSA Resistance against Double Encryption Attack 
Let C=Cipher Text, T=Plain Text, e= public key 

exponent, d=private key exponent, n= a hidden real 
modulus, M= a public masking modulus, and KU=Public 
key Components. 

C=Te mod M 
T=Cd*e mod M 
T= (Cd mod M)e mod M 
Example:  Assume: correspondents know KU= (291, 

20723), C=5978, T=? 
Primes= 17, 23 and Plain Text=63 (not public) 
Attacking: T= (5978) 291 mod 20723=175 ≠ 63 
Checking: If we can or cannot compute back to its 

known cipher text using a known public key? 
C=T e mod M=175 291 mod 20723=1349 ≠ 5978. 
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This shows that HRM-RSA is resistant against a 
Double Encryption Attack. 

HRM-RSA Resistance against Mathematical Theorems 
To unlock existing work, we can find prime numbers 

P1, P2 … Pn between ∛n and √n   which are divisors of 
n (Sieve of Eratosthenes). Then we can compute ∅ (n) and 
d =e-1mod ∅ (n), as e and n are public. However, in our 
HRM-RSA algorithm mask M is public and real modulus 
n is hidden, attackers cannot have any clue to unlock our 
cryptosystem.  

Private Key exponent (d) =e-1 mod ∅ (n); but in our 
algorithm d and n are private key components; therefore, 
attackers cannot get n to factorize it and to drive d. 

HRM-RSA Resistance against Multiple Private Exponent 
Attack 

Due to keys generated between 1 and ∅ (n), its private 
and public key exponents’ size cannot be larger than a 
hidden real modulus n. It results in HRM-RSA to have a 
unique key pairs. Hence, a hidden real modulus n is kept 
private and a public mask modulus M has no relationship 
to prime numbers p and q, it is difficult for attackers to 
make factorization and multiple key generation attack. 

Security Strength of Algorithms 
We have summarized algorithms security strength 

analysis discussed in section “5” using Table 7.  

Table 7. Comparison based on the Security Strength of the 
Algorithms 

Algorithm Strength Reason 
RSA  low It uses direct mathematical relationship 

between common modulus and prime 
numbers.  Factorization and a number of 
other attacks. 

ESRKGS  Medium Use more primes, indirect mathematical 
relationships. But alternative private key 
exponent, factorization, and other 
attacks are possible. 

MRSA High Use more primes and double keys. But 
Factorization is possible.  

HRM-RSA Very High Difficult to factorize and cryptanalysis 
because public mask modulus keeps  
real modulus hidden from the public in 
HRM-RSA algorithm unlike in RAS and 
other related work. 

VI. CONCLUSIONS 
Hidden Real Modulus based RSA cryptosystem has 

been proposed in this paper. The existing cryptosystem 
security algorithms are based on common modulus n 
which makes them vulnerable to different types of 
cryptanalysis attacks like factorization, polynomial-time 
quantum algorithms, multiple exponents, double 
encryption attacks, etc.  Since our novel algorithm hides 
the real modulus n from attackers using random mask 
multiplier m by converting it into public mask modulus 
M, it leaves no clue for attackers.  As a result, we have 
found that it is highly secured than existing systems. 
Hence, as the real modulus n is hidden from the public, 
key exponents’ (e, d) and prime numbers (p, q) are not 

dependent on a public mask modulus M, and public 
modulus M has unpredictable property, it is difficult to 
unlock our cryptosystem. As a result, the false cipher is 
transported over a network medium that makes it more 
difficult for attackers to conduct attacks based on cipher 
text.  

Generally, our proposed, HRM-RSA algorithm, has 
improved “security strength”, “key generation speed”, 
“encryption speed,” and “decryption speed”. This makes 
it more ideal to be implemented in very security 
demanding environments like Banks, e-commerce, etc. 
applications. 

As future work, this algorithm can be extended by 
considering higher key lengths; real world 
implementation of the algorithm in different applications: 
pretty-good-privacy (PGP), cryptocurrency transaction, 
mobile communication, wireless communication, and 
others. 
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