

238 VOLUME 22(2), 2023

Date of publication JUN-30, 2023, date of current version FEB-15, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.2.3094

Hidden Real Modulus RSA Cryptosystem
GETANEH AWULACHEW’ ZIMBELE1, SAMUEL ASFERAW DEMILEW2

1Department of Information Technology, College of Computing, Debre Berhan University, Debre Berhan, Ethiopia, PO Box: 445, e-mail:
get.awulachew@gmail.com

2Department of Information Technology, College of Computing, Debre Berhan University, Debre Berhan, Ethiopia, PO Box: 445, e-mail:
samasferaw@gmail.com

Corresponding author: Getaneh Awulachew’ Zimbele (e-mail: get.awulachew@gmail.com).

 ABSTRACT Cryptographic techniques in cyber security can be categorized into symmetric and asymmetric.
Among asymmetric cryptographic techniques, the RSA algorithm is more popular and considered as secured.
Since, RSA uses the common modulus in both encryption and decryption, this modulus is openly available for the
public which makes it exposed for attack. Its security is based on the assumption of large integer factorization
problem, but this could leave it open to different cryptanalysis attacks: low private exponent attack, Shor’s
polynomial-time quantum algorithm, quantum inverse Fourier transform and phase estimation. To address these
shortcomings, this paper proposes a public-key security algorithm called Hidden Real Modulus RSA (HRM-RSA)
which hides real modulus by masking it. The public mask modulus which is a pseudo random masking number is
derived from real modulus. Then, this derived public mask modulus is introduced in a public key component; as a
result, a real modulus is kept hidden from the public unlike the case in RSA. Encryption is done using this public
mask modulus and the decryption process is done using a private hidden real modulus. For performance analysis
Net bean IDE 8.2 is used, and the proposed algorithm is compared with state-of-the-art algorithms: RSA,
ESRKGS, and MRSA based on security strength, time complexity, key generation time, encryption speed, and
decryption speed. The performance analysis shows that HRM-RSA is less complex but highly secured than
existing algorithms. It improves key generation time of ESRKGS, and MRSA by 311%, 42%; encryption time of
RSA, ESRKGS, MRSA by 0.7%, 139%, 735%; decryption time of RSA, ESRKGS, MRSA by 3%, 138%, 799%,
respectively.

 KEYWORDS Asymmetric key; Cryptography; Data security; Hidden real modulus; Masking; RSA.

I. INTRODUCTION
ODAY, secure online communication has become an
enormous concern in the untrusted world of the Internet,

where there are several effective security attackers. Cyber-
attacks occur quickly and unfold across the world in minutes
not depending on borders, geography, or national jurisdictions
[1]. There are several proposed mechanisms to ensure data
security on the Internet, which includes: Intrusion Detection
System (IDS), Username, Password, Intrusion Prevention
System (IPS), Firewall, Biometric, Proxy, and Cryptography.
Cryptography is a cyber-security mechanism which provides
data Confidentiality, Integrity, and Authenticity. While
traditionally cryptographic algorithms are divided into three
categories Keyless, Symmetric key and Asymmetric key,
modern cryptographic techniques can be categorized into
asymmetric and symmetric key cryptosystems [2], [3], [4], [5].

In symmetric-key the challenge is secure key distribution
because of eavesdropping during key sharing; as a result,
numerous keys are needed: for n users’ n*(n-1)/2 keys required,

whereas in asymmetric key the challenge is on the need for
third party, i.e., Certificate Authority(CA) [2], [3], [4], [5].

RSA cryptography, which is one of the most commonly
used asymmetric cryptographic techniques today, was
developed by Rivest, Shamir, and Adelman in 1978. RSA
cryptography is based on the generation of two large-random-
prime numbers p, and q of equal bit-size and the generation of
random exponents d and e satisfying Euler’s function as
described in Equation (1) [4], [6], [7], [8].

     
     

1 , , 0,1 ,

 * 1 * 1

;

.

d e mod n e d n Z

n p q n p q





   

    

 (1)

Although RSA is considered as a popular and secured

public key cryptography technique, it could be open to different
security attacks because it uses a common real modulus during
the encryption-decryption process. To fill this gap, this paper
proposes a new cryptographic algorithm called Hidden Real
Modulus RSA (HRM-RSA) algorithm.

T

Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

VOLUME 22(2), 2023 239

The rest of the paper is organized as follows: Section 2
discusses related work methods, contributions, and gaps. The
proposed algorithm is introduced in Section 3. Section 4
presents the mathematical proof of the proposed algorithm.
Section 5 presents a performance analysis of HRM-RSA with
respect to existing work. Finally, Section 6 presents a
conclusion and future work.

II. RELATED WORK
Rivest et al. (1978) proposed a novel asymmetric cryptosystem
method called RSA for protecting the confidentiality of data. It
is the first algorithm used for both digital signature and data
encryption [4], [9]. It uses two large prime numbers p and q to
generate private and public key pairs. As depicted in Algorithm
1, in the RSA cryptosystem there are three main procedures,
namely: key generation, encryption, and decryption processes.
The decryption key exponent is different from the encryption
key exponent but has a mathematical relationship [2], [3].

The major drawback of RSA algorithm is that its security is
based on the assumption of the difficulty of integer
factorization which does not work in massive parallel
computational quantum computers: D-Wave quantum
computer attacks and Shor’s quantum polynomial-time
algorithms based on the quantum inverse Fourier transform,
and phase estimation [10], [11], [12], [13]. The reason for the
possibility of RSA factorization is that its common real
modulus n property is constant, i.e., it is a product of two prime
numbers. Other attacks on RSA include Wiener’s continued
fraction attack, lattice reduction and Coppersmith’s method,
weak public and private exponent attacks, large private
exponent attack, combined attack by sat-approach, advanced
timing attack, ion fault injection attack, common modulus
attack, blind signature attack, and double encryption attack [2],
[3], [5], [10], [14], [15], [16], [17], [18], [19], [20], [21].

Algorithm 1: RSA Algorithm [9]

RSA_Key_Generation ()
INPUT: Prime integers’ p and q.
OUTPUT: Find public key exponent (e), private key exponent (d),
and common modulus (n).
Begin
Procedure (p, q, e, d, and n)

1. Generate two random distinct prime integers’ p and q
2. Calculate n ← p * q
3. Calculate Euler Ø (n) ← (p-1) * (q-1)
4. Generate random public key exponent e such that,

 gcd (e, Ø(n))=1, 1<e <Ø (n)
5. Calculate private key exponent d, such that,
 d← e-1mod Ø (n)

End Procedure
End
RSA_Encryption ()
Input: Select plain text (T), public key exponent (e), and common
modulus (n).
Output: Find cipher text (C).
Begin

 Procedure (T, e, n, and C)

C ← (T)e mod n
 End Procedure
End
RSA_Decryption ()

Input: Select cipher (C), private key exponent (d), and common
modulus (n).
Output: Find plain text (T).
Begin

Procedure (T, d, n, and C)
T ← Cd mod n

End Procedure
End

J. Jaiswal et al. (2014) proposed an algorithm called

“Reformed RSA algorithm based on Prime Number” to secure
data communication over the network and to increase speed
performance of the RSA algorithm [22]. This method uses the
common modulus n which is a multiplication result of four
prime numbers p, q, r, and s, and offline storage method. As a
result, algorithm speed is increased through offline storage of
public key in a database which is identical in all networks
without any improvement on the security of standard RSA. The
limitation of this algorithm, like standard RSA, is that its
encryption and decryption keys are dependent on the common
modulus; therefore, it can be easily unlocked. Other drawbacks
include a distributed database (DDB) update time and DDB
attack [22].

M. Thangavel et al. (2015) proposed another enhanced
method called “An Enhanced and Secured RSA Key
Generation Scheme (ESRKGS)” based on four randomly
generated prime numbers to increase the time required to
factorize these primes [23]. The computation of public key and
private key exponents depends on the value of n, which is the
product of four prime numbers. It enhanced the security of RSA
by reducing direct attack using larger exponents. The limitation
of this approach includes encryption, and decryption time is
higher than the original RSA, and most attacks on RSA can be
applicable to this algorithm too [23]. Erkam Lüy et al. (2016)
showed that ESRKGS has a similar security level as traditional
RSA [24], [25].

S. Mathur et al. (2017) proposed another enhanced method
called “Analysis and Design of Enhanced RSA Algorithm to
Improve the Security”. It uses four prime numbers and multiple
public keys with the k-nearest neighbor algorithm [25]. The
limitations of this approach are the following ones: it has higher
key generation, encryption, and decryption time than original
RSA as it encrypts and decrypts character by character and
incorporates a looping process; it is compatible only for text
files and special characters like @, #. $, %, &, and *.

Panda & Chattopadhyay (2017) proposed a method called
“Hybrid security algorithm for RSA cryptosystem based on
four random prime numbers”, which is based on the ESRKGS
algorithm and uses the random modulus [7]. The limitations of
this algorithm are the following ones: most of the time the
correct random modulus number w may not be found; it has
high key generation time (due to exponentiation and
modulation operations which do not add any security feature to
the system); a double encryption attack (see Section 5,
Subsection 5.5) and generating alternative private key
exponents is possible to the system since it uses common
modules.

M.A. Islam et al. (2018) proposed a modified method called
a “Modified and Secured RSA Cryptosystem based on n prime
numbers (MRSA)” which improves the security of the standard
RSA algorithm by using four distinct prime numbers and two
different encryption-decryption key pairs as shown in

 Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

240 VOLUME 22(2), 2023

Algorithm 2 [6]. In this cryptosystem, modulus n is the product
of p, q, r, and s. To produce key pairs, public keys e and f have
been selected randomly and private key exponents d and g are
the multiplicative inverse of each public key exponents in
modulo n. Key exponents are dependent on common modulus
n. Since the process of encryption and decryption depends on
common modulus n, it is easy to unlock the system. The
limitation of this approach includes high encryption and
decryption time when compared to other related work;
factorization of common modulus n to unlock the system is not
difficult; the cipher text size, which is a major concern in data
transmission, is doubled when compared with RSA.

Algorithm 2: MRSA Algorithm [6]

MRSA_Key_Generation ()
INPUT: Prime integers’ p, q, r, and s.

OUTPUT: Find public key exponents (e, and f), Private key

exponents (d, and g), and Common Modulus (n).
Begin
Procedure (p, q, r, s, e, f, d, g, and n)
1. Generate four random unique prime integers’ p, q, r, and s
2. Calculate n ← p * q * r * s
3. Calculate Euler’s Ø (n) ← (p-1) * (q-1) *(r-1) * (s-1)
4. Generate distinct public key exponents e and f such that,

 gcd (e, Ø (n)) = 1, 1< e < Ø (n) and gcd (f, Ø (n)) = 1,
 1< f < Ø (n)
5. Calculate private key exponents d and g such that,

 d ← e-1 mod (Ø (n)) and g ← f -1 mod (Ø (n))
End Procedure
End

MRSA_Encryption ()
Input: Select Plain text (T), public key exponents (e, f), and

common modulus (n).

Output: Find Cipher text C.
Begin
Procedure (T, e, f, n, and C)

C ← (T e mod n) f mod n
End Procedure
End

MRSA_Decryption ()
Input: Select cipher text (C), private key exponents (d, g), and

common modulus (n).

Output: Find plain text (T).
Begin
Procedure (T, d, g, n, and C)

T ← (C g mod n) d mod n
End Procedure
End

A review of related work shows that RSA, ESRKGS, and

MRSA are more reliable algorithms than other related work.
Nevertheless, even these algorithms have security and
execution performance drawbacks which could be addressed.

Hence, to address these shortcomings, this work attempts to
propose a new asymmetric cryptographic algorithm called
Hidden Real Modulus RSA (HRM-RSA) and its simulation
result is compared with state-of-the-art related works:

ESRKGS, MRSA and with common and popular algorithm
RSA.

III. PROPOSED WORK
In this section, we present the proposed Hidden Real Modulus
RSA (HRM-RSA) Algorithm.

Generally, all existing related works use a common real
modulus for encryption and decryption which makes them
unsecured. Their security strength depends on the difficulty of
large integer factorization problem which will not be a problem
for D-Wave quantum computer attacks, Shor’s integer
factorization and polynomial-time factorization algorithms
[10], [11] and [12], [13]. To avoid these limitations a new
security parameter called public mask modulus M which is
computed from unpredictable random integer number m and a
real modulus n is introduced so as to hide a real modulus n from
the public.

Like RSA, the basic steps used in this proposed algorithm
are key generation, encryption, and decryption processes with
our new modifications in the processes. The sixth and seventh
steps in our algorithm key generation process differ from RSA
and other related works. Another difference is that a common
real modulus n is used for both encryption and decryption in
RSA and existing related works, but in HRM-RSA a real
modulus n is kept private to be used only for decryption
whereas encryption is done with a new parameter called public
mask modulus M.

 In the key generation process, steps to be computed by the
receiver are as follows: First, two large prime numbers p and q
are generated randomly. Second, the product of these two large
prime numbers p and q generates the real modulus which in this
work called hidden real modulus n. Third, Euler’s Ø (n) is
calculated by multiplying p-1 with q-1. Fourth, the prime
encryption exponent (e) will be randomly generated between 1
and Ø (n) in which the Greatest Common Devisor (GCD) of e
and Ø (n)) is 1. Fifth, the decryption exponent (d) is computed
by calculating inverse of (e) mod Ø (n). Sixth, a large
multiplayer number m will be randomly generated. This
multiplier m can be any type of integer with any bit size.
Seventh, a public mask modulus M is computed by multiplying
a real modulus n by a random multiplayer number m to hide the
real modulus. This masking process hides the real modulus n
from the public. As a result, the real modulus n becomes
private, unlike common modulus in RSA. Due to this, in this
paper a real modulus n is referred as hidden real modulus n.
This method of producing the public mask modulus M from
any type of random number m makes it unpredictable. This
unpredictable property of the public mask modulus M will
challenge cryptanalysts from designing cryptanalysis algorithm
to unlock HRM-RSA. Finally, the receiver makes public key
components (e, and M) available to the correspondents while
private key components (d, n) are kept secret.

During encryption step: First, the sender encrypts the plain
text T using public key exponent e and public mask modulus
M. The bit length of plain text T should be smaller than the bit
length of n and M. Then, the encrypted text C will be sent to
the receiver. Since the encryption is not done using a real
modulus, this cipher text is a false cipher text. This technique
challenges attackers from conducting attacks based on cipher
text like brute-force attack.

During the decryption step: First, the receiver receives false
cipher text C delivered from the sender and decrypts to genuine
cipher C1 by removing a mask using a hidden real modulus n.

Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

VOLUME 22(2), 2023 241

Then, the receiver decrypts this genuine cipher text C1 into the
original plain text T using private key exponent d and hidden
real modulus n.

Key Generation and En/Decryption architecture of the
proposed algorithm is basically shown in Algorithm 3. Fig. 1
and Fig. 2 farther illustrate Key Generation and En/Decryption
architecture of the proposed algorithm, respectively.

Algorithm 3: HRM-RSA Algorithm

HRM-RSA_Key_Generation ()
INPUT: Prime numbers (p, q), and multiplier number m.
OUTPUT: Find public key exponent (e), private key

exponent (d), and modulus numbers (n, M) in bit-length.
Begin
Procedure (p, q, m, e, d, n, and M)

1. Generate two random distinct prime numbers p and q
within bit-length/2
2. Compute a real modulus n such that, n ← p * q
3. Calculate Euler Ø(n) such that, Ø(n)← (p-1)*(q-1)
4. Randomly generate a prime public key exponent e, such

that, gcd (e, Ø (n)) = 1, 1< e< Ø (n)

5. Calculate private key exponent d, such that, d← e-1 mod
Ø (n)
6. Generate a random multiplier number m within any bit-

length, such that, m ← RNG (m.length, rand), m>1;
7. Compute a public mask modulus M, such that, M ← m
* n;
End Procedure
End

HRM-RSA_Encryption ()
Input: Select plain text (T), public key exponent (e), and

public mask modulus (M).

Output: Cipher text (C).
Begin
Procedure (T, e, M, and C)

C = (T) e mod M
End Procedure
End

HRM-RSA_Decryption ()
Input: Take False Cipher (C), private key exponent (d) &

hidden real modulus (n).

Output: Find plain text (T).
Begin
Procedure (C, d, n, and T)

C1= C mod n // Since (C mod M) mod n = C mod n
where M is the multiple of n, This mod removes the mask
and results genuine cipher text C1. This also improves
speed performance as modulation is performed before
exponentiation.
T =C1 d mod n
End Procedure
End
Fig.1 shows a flow chart for key generation steps. As shown

in this figure, HRM-RSA algorithm takes two large random
prime numbers p and q generated by Random Prime Number
Generator function (RPNG), and random multiplier m
generated by Random Number Generator function (RNG) as

input. Finally, it generates the public key (KU) = (e, M) and the
private key (KR) = (d, n) as output.

Figure 1. HRM-RSA Key Generation Architecture

Fig.2 shows a flow chart for the encryption, and decryption
process of HRM-RSA. This flowchart shows that in the
encryption process Alice takes the public key component of
Bob which are KU= (e, M) and her plain text T of which bit
length is less than the bit length of n and M as input and
produces a false cipher text C to be transmitted to the receiver
Bob using encryption algorithm of HRM-RSA. Public mask
modulus M is used for masking both genuine cipher text C1
(which was computed as C1=T e mod n in RSA) and a hidden
real modulus n. When Alice uses a public mask modulus M to
encrypt plain text T, a genuine cipher C1 becomes hidden in
false cipher C.

As Bob receives false cipher text C, he starts the decryption
process using our HRM-RSA decryption algorithm and his
private key components KR= (d, n). In the decryption process,
first, he computes genuine cipher C1 using false cipher C
received from Alice and his hidden real modulus n. Then, he
uses his private key component KR= (d, n), and genuine cipher
text C1 as input and recovers the copy of original plain text T
as output.

Figure 2. HRM-RSA Enc/Decryption Architecture

 Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

242 VOLUME 22(2), 2023

Let us discuss a simple example using proposed algorithm.

Key Generation:
Assume, Bob chooses p = 13, q = 11 and calculates

hidden real modulus n= 143, Ø (n) = (13-1) (11-1) or 120.
Bob chooses positive integer m = 5 and calculates M= n *
m = 715.

Now he chooses two exponents which are e and d from
Z120*. If he chooses e = 23 then d is 47. Note that e and d
are inverses of each other, i.e., e * d mod 120=1.

Encryption:
Now imagine that Alice needs to transmit the plaintext

T= 6 to Bob, she uses the public exponent 23 and public
mask modulus 715 of Bob to encrypt the plain text 6.
C=623 mod 715 = 789730223053602816 mod 175 = 271

Decryption:
Bob uses the hidden real modulus n = 143 to decrypt a

false cipher text C = 271 received from Alice to genuine
cipher C1. Then he uses the private exponent d = 47 and
hidden real modulus n = 143 to decrypt a genuine cipher
text C1 to plain text T.

C1= 271 mod 143=128
T = 12847 mod 143 = 6

IV. MATHEMATICAL PROOF OF HRM-RSA ALGORITHM
In this section, we have proved that the encryption and

decryption process of HRM-RSA are inverses of each other
using the 2nd version of Euler’s theorem.

If n = p*q, a<n, and if k is an integer, then a k*Ø(n) +1

=a (mod n), Ø (n) is the totient function.

Additionally, we have used the congruence of modular
properties.

a kr mod n = (a k mod n) r mod n

Assume that the plain text delivered to Bob from Alice is
T1 and prove that it is equal to plaintext T sent by Alice as
encrypted cipher text C.

C= T e mod M; where M=n*m, mεZା

T1=C d mod n= (T e mod M) d mod n

T1= ((T e mod M) d mod M) mod n; where n|M and

n<M.

T1= T e d (mod M mod n) //congruence of
modular properties

T1 = (T e d mod n) where n|M and n<M therefore fields

size is n.

T1=T e d (mod n)

e * d = k * Ø (n)+1; i.e.,d ande are inverse of each

other in moduloØ (n)
T1= T e d (mod n) = T k*Ø (n) +1 mod n
T1= T k*Ø (n) +1 mod n = T mod n =P // Euler’s

theorem (2nd version)
P1 = P

V. IMPLEMENTATION AND PERFORMANCE ANALYSIS
HRM-RSA is implemented using Java program on Net Beans
IDE 8.2 programming environment, running on Intel(R)
Core(TM) i5-6200U CPU @ 2.30GHz (4 CPUs) and 4 GB
RAM. To conduct our experiment, four distinct random prime
numbers from each of six different bit sizes: 28-bit, 56-bit, 128-
bit, 256-bit, 1024-bit and 2048-bit are randomly generated.
Since RSA and HRM-RSA need only two prime numbers as
input, two of the four distinct random prime numbers for each
of the six different bit sizes are used. On the other hand,
ESRKGS and MRSA use four distinct prime numbers as input
from each bit size. To simulate the speed performance of the
algorithms, we have used six different bit-size and distinct
combinations of randomly chosen prime numbers. To make our
result analysis more reliable, we have executed the algorithms
five times for each input and the average execution time is
considered.

A. KEY GENERATION TIME OF ALGORITHMS
Table 1 shows the average key generation time of the
algorithms for each bit length. As shown in Table 1, the key
generation time cost of HRM-RSA is better than other state-of-
the-art algorithms, except RSA.

Table 1. Summary of Key Generation Time (in Seconds)

Based on key generation time due to Table 1, we have

organized comparison Table 2. Table 2 shows that the key
generation performance of HRM-RSA is 10% less than RSA;
on the other hand, it improves key generation performance of
ESRKGS and MRSA by 311% and 42%, respectively.

Table 2. Key Generation Time Comparison of HRM- RSA
with RSA, ESRKGS and MRSA

Bit

Length

Algorithm

RSA ESRKGS MRSA

28bit -8% -4% 33%
56bit -11% -8% 25%
128bit -9% -7% 45%
256bit -9% 3% 45%
1024bit -9% 270% 49%
2048bit -14% 1613% 55%
Average -10% 311% 42%

Fig. 3(a) and Fig. 3(b) are generated from key generation

time Table 1. To show the result in line with bit length increase
in more detail, we have presented bit length from 28 to 1024 in
Fig. 3(a) and from 28 to 2048 in Fig. 3 (b). According to Fig.
3, we can see that the key generation speed performance of
HRM-RSA is slightly less than RSA. However, the key
generation time performance of HRM-RSA is far better than
ESRKGS and MRSA. Therefore, HRM-RSA key generation is
less complex than MRSA and ESRKGS because it uses simple

Bit

Length

Algorithms

RSA ESRKGS MRSA HRM -RSA

28bit 0168798005 0.17756215 0.245325576 0.184443163
56bit 0.163752084 0.169519753 0.230654326 0.184122907

128bit 0.166129807 0.170200627 0.26433909 0.182154953

256bit 0.165257958 0.18646317 0.26223776 0.180688844

1024bit 0.175072555 0.71512838 0.288558782 0.193203724

2048bit 0.185033156 3.701661608 0.334886596 0.216115685

Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

VOLUME 22(2), 2023 243

computation which is real modulus hiding unlike others which
use complex computation adding more exponentiation and
modulation operations.

(a)

(b)

Figure 3. Analysis of Key Generation Performance (Seconds)

B. ENCRYPTION TIME OF ALGORITHMS

Table 3 shows the average encryption time of the algorithms
for each bit. The table shows that our HRM-RSA algorithm is
far better than other state-of-the-art algorithms.

Table 3. Summary of Encryption Time (in Seconds)

Algorithm/
 Bit size

RSA ESRKGS MRSA HRM-RSA

28bit 0.001664339 0.002098514 0.003099472 0.00162628
56bit 0.002234535 0.003376719 0.004664056 0.002316796
128bit 0.003467855 0.005904289 0.007825139 0.003617956
256bit 0.006172235 0.013026965 0.03611693 0.005847371
1024bit 0.11656283 0.462179563 2.010568515 0.121403782
2048bit 0.939976892 3.411535596 18.53038885 0.869988403

Based on encryption time due to Table 3, we have analyzed

Table 4. Table 4 shows that HRM-RSA has improved
encryption performance of traditional RSA, ESRKGS, and
MRSA by 0.7%, 139%, and 735%, respectively.

Table 4. Encryption Time Comparison of HRM-RSA with
RSA, ESRKGS and MRSA

Algorithm/
 Bit size

RSA ESRKGS MRSA

28bit 2% 29% 91%
56bit -4% 46% 101%
128bit -4% 63% 116%
256bit 6% 123% 518%
1024bit -4% 281% 1556%
2048bit 8% 292% 2030%
Average 0.7% 139% 735.3%

Based on Table 3, we have analyzed Fig. 4 (a) and 4(b).

These figures show that HRM-RSA performs better than other
state-of-the-art algorithms; especially the performance
difference from ESRKGS and MRSA is significant. Therefore,
the encryption time performance of the HRM-RSA algorithm
is better than the state-of-the-art algorithms.

(a)

(b)

Figure 4. Analysis of Encryption Performance (Seconds)

C. DECRYPTION TIME OF ALGORITHMS
Based on decryption time collected from the execution of each
algorithm, we have summarized the average decryption time of
the algorithms for each bit as shown in Table 5.

Table 5. Summary of Decryption Time (in Seconds)

Algorithm/
 Bit size

RSA ESRKGS MRSA HRM-RSA

28bit 0.00168917 0.00218299 0.002762321 0.00166135
56bit 0.00238831 0.00346777 0.004531875 0.00215842
128bit 0.00368699 0.00523331 0.008751857 0.00360558
256bit 0.0059042 0.01308115 0.03492346 0.00592502
1024bit 0.1171262 0.45592054 2.215529872 0.11901915
2048bit 0.89804749 3.30941532 19.79810731 0.85252463

 Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

244 VOLUME 22(2), 2023

Based on decryption time due to Table 5, we have analyzed
Table 6. Table 6 shows that in decryption speed performance,
HRM-RSA outperforms the-state-of-the-art algorithms by 3%,
138%, and 799% than RSA, ESRKGS, and MRSA,
respectively. This makes HRM-RSA cost-effective.

Table 6. Decryption Time Comparison of HRM- RSA with
RSA, ESRKGS, and MRSA

Algorithm/
 Bit size

RSA ESRKGS MRSA

28bit 2% 31% 66%
56bit 11% 61% 110%
128bit 2% 45% 143%
256bit 0% 121% 489%
1024bit -2% 283% 1761%
2048bit 5% 288% 2222%
Average 3% 138% 799%

Based on decryption time due to Table 5, we have analyzed

Fig. 5(a) and Fig 5(b). These figures show that the decryption
speed of HRM-RSA is better than other state-of-the-art
algorithms. Especially, as the bit length of prime numbers
increase our algorithm performance increases more
significantly.

(a)

(b)

Figure 5. Analysis of Decryption Performance (Seconds)

D. TIME COMPLEXITY OF ALGORITHMS

Based on the complexity of MILLER-RABIN computed by
M.A. Islam et al. (2018) [6] and Table 1 shown in this section,
MRSA is more complex than RSA whereas HRM-RSA has less
complexity than other related work except for traditional RSA.
Therefore, HRM-RSA requires less computing resources than
other existing works.

E. SECURITY ANALYSIS OF ALGORITHMS

Double Encryption Attack against RSA
In our work Double Encryption means the process of applying
the public keys with the encryption algorithm both at the sender
and receiver side, whereas Double Encryption Attack (DEA)
means the plain text is recovered back when the receiver
applies the public keys instead of private keys as described
below:

Since common modulus is Public in Standard RSA, it is
possible to use public key exponent both at the sender and at
the receiver side to get the same result of its inverse called
private key exponent by man in the middle (MITM) attack
using Double Encryption Attack as follows:

Let C = cipher text, T= plain text, e = public key exponent,
d = private key exponent and n = common modulus.

Sender Side: C=T e mod n, Receiver Side: T=Cd mod n.
T=Cd mod n but d is private so MITM can use T= Ce mod

n. because ‘e’ and ‘d’ are inverses of each other within this
common modulus n as shown in examples 1 and 2 below. For
simplicity, we have used small integers.

Example 1: Assume: Ku= (5, 21), C=16, T=?
Attacking: T= (16)5 mod 21=4
Checking: C=T e mod n = (4)5 mod 21=16

Example 2: Assume: Ku= (5, 35), C=17, T=?
Attacking: T= (17)5 mod 35=12
Checking: C=T e mod n = (12)5 mod 35=17

Mathematical Theorems to Unlock RSA
a. Check primness of a number p
 P is prime if it is not divisible by any primes

<=ඥp

b. Find all prime numbers less than n
 Write all number s b/n 2 and n
 Check if any number m is divided by any prime

< √n (Sieve of Eratosthenes)
c. Euler’s phi-Function; used to find co-prime

numbers to n
∅(m × n) = ∅(m) × ∅(n) = (m − 1)(n − 1)

Find any prime number p such that √n
య ∛n <= p < √n and

divider of n (Sieve of Eratosthenes), as one of the prime
numbers lays within this range and key length of p is the key
size of n–1, check ‘p’ from √n -1.

Find another prime q =n/p, ∅ (n) = (p-1) (q-1). Then private
key exponent (d) =e-1mod ∅ (n), as key exponent e is known to
the public.

Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

VOLUME 22(2), 2023 245

Example 1: Let n=33, ∅ (n) =?
Answer:
Find the range of one of the prime numbers let P, such that

∛33 <= P<√33  3<= P <5.
Find a prime number within a range and devisor of n
 Check p=4 ---not prime; therefore, go to next p=p-1
 Check p=3 ----yes (therefore 1st prime found)
 Find q=n/p=33/3=11----- 2nd prime found
 Find ∅(n) =(p-1)(q-1)=(3-1)(11-1)=20.

Example 2: Let n=13,221
Answer:
Find the range of one of the prime numbers let P, such that

∛13221 ≤ P < √13,221; 23 ≤ p < 114.
Check which number in a range is a prime and devisor of

13,221
 Check p=113---yes (1st prime found)
 Find 2nd prime q=13,221/113=117
 Find ∅(n) =(p-1)(q-1)=(113-1)(117-1)=12,992.
However, we have also computed a private key exponent d

of RSA using Fermat’s theorem as d≡ e-1 mod ∅ (n). Using
Fermat’s theorem version 1 and 2, we have found that d=e-1
mod ∅ (n) ≡ e ∅ (n)-1 mod ∅ (n) from public key exponent e and
common modulus n.

Procedures to Unlock RSA
We designed attacking procedures for RSA as shown in

step 1 and 2 below based on the mathematical theorems shown
in subsection 5.5.2. (Remember Ku = (e, n) is Public).

Step 1. Find ∅(n) :

(a). Find all Primes < √n starting from √n − 1 (Sieve of
Eratosthenes)

(b). Select a prime as P if divider of n i.e. GCD(P, n)=P
(c). Find q=n/p
(d). Calculate ∅(n)=(p-1)(q-1) (Euler’s phi-function).

Step 2. Find d=e-1 mod ∅(n) using
(a). e∅(n)=1 mod ∅(n) (Euler’s theorem)
(b). e∅(n)-1=e-1 mod ∅(n) (divide both sides by e)
(c). e-1= e∅(n)-1 mod ∅(n) (Fermat’s little theorem)
(d). de= 1 mod ∅(n) (private exponent generation

algorithm)
(e). d= e∅(n)-1 mod ∅(n) (substitute e-1 with Fermat’s little

theorem).

Experimental Output
We have implemented java program to unlock RSA based

on unlocking procedures depicted in subsection 5.5.3.
Experimental sample Java outputs for 56 bits and 80 bits are
shown in Fig. 6 (a) and (b), respectively.

(a)

(b)

Figure 6. Experimental sample Java outputs

HRM-RSA Resistance against Double Encryption Attack
Let C=Cipher Text, T=Plain Text, e= public key

exponent, d=private key exponent, n= a hidden real
modulus, M= a public masking modulus, and KU=Public
key Components.

C=Te mod M
T=Cd*e mod M
T= (Cd mod M)e mod M
Example: Assume: correspondents know KU= (291,

20723), C=5978, T=?
Primes= 17, 23 and Plain Text=63 (not public)
Attacking: T= (5978) 291 mod 20723=175 ≠ 63
Checking: If we can or cannot compute back to its

known cipher text using a known public key?
C=T e mod M=175 291 mod 20723=1349 ≠ 5978.

 Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

246 VOLUME 22(2), 2023

This shows that HRM-RSA is resistant against a
Double Encryption Attack.

HRM-RSA Resistance against Mathematical Theorems
To unlock existing work, we can find prime numbers

P1, P2 … Pn between ∛n and √n which are divisors of
n (Sieve of Eratosthenes). Then we can compute ∅ (n) and
d =e-1mod ∅ (n), as e and n are public. However, in our
HRM-RSA algorithm mask M is public and real modulus
n is hidden, attackers cannot have any clue to unlock our
cryptosystem.

Private Key exponent (d) =e-1 mod ∅ (n); but in our
algorithm d and n are private key components; therefore,
attackers cannot get n to factorize it and to drive d.

HRM-RSA Resistance against Multiple Private Exponent
Attack

Due to keys generated between 1 and ∅ (n), its private
and public key exponents’ size cannot be larger than a
hidden real modulus n. It results in HRM-RSA to have a
unique key pairs. Hence, a hidden real modulus n is kept
private and a public mask modulus M has no relationship
to prime numbers p and q, it is difficult for attackers to
make factorization and multiple key generation attack.

Security Strength of Algorithms
We have summarized algorithms security strength

analysis discussed in section “5” using Table 7.

Table 7. Comparison based on the Security Strength of the
Algorithms

Algorithm Strength Reason
RSA low It uses direct mathematical relationship

between common modulus and prime
numbers. Factorization and a number of
other attacks.

ESRKGS Medium Use more primes, indirect mathematical
relationships. But alternative private key
exponent, factorization, and other
attacks are possible.

MRSA High Use more primes and double keys. But
Factorization is possible.

HRM-RSA Very High Difficult to factorize and cryptanalysis
because public mask modulus keeps
real modulus hidden from the public in
HRM-RSA algorithm unlike in RAS and
other related work.

VI. CONCLUSIONS
Hidden Real Modulus based RSA cryptosystem has

been proposed in this paper. The existing cryptosystem
security algorithms are based on common modulus n
which makes them vulnerable to different types of
cryptanalysis attacks like factorization, polynomial-time
quantum algorithms, multiple exponents, double
encryption attacks, etc. Since our novel algorithm hides
the real modulus n from attackers using random mask
multiplier m by converting it into public mask modulus
M, it leaves no clue for attackers. As a result, we have
found that it is highly secured than existing systems.
Hence, as the real modulus n is hidden from the public,
key exponents’ (e, d) and prime numbers (p, q) are not

dependent on a public mask modulus M, and public
modulus M has unpredictable property, it is difficult to
unlock our cryptosystem. As a result, the false cipher is
transported over a network medium that makes it more
difficult for attackers to conduct attacks based on cipher
text.

Generally, our proposed, HRM-RSA algorithm, has
improved “security strength”, “key generation speed”,
“encryption speed,” and “decryption speed”. This makes
it more ideal to be implemented in very security
demanding environments like Banks, e-commerce, etc.
applications.

As future work, this algorithm can be extended by
considering higher key lengths; real world
implementation of the algorithm in different applications:
pretty-good-privacy (PGP), cryptocurrency transaction,
mobile communication, wireless communication, and
others.

References

[1] S. Kumar, et al., “Comparative study on AES and RSA,” Proceedings of
the International Conference on Communication and Signal Processing,
India, April 6-8’2018, pp. 0501-0504.

[2] U. Thirupalu and E. K. Reddy, “Performance analysis of cryptographic
algorithms in the information security,” no. March, International Journal
of Engineering Research & Technology (IJERT), vol. 8, issue 2, 2019.

[3] D. Mahto and D. K. Yadav, “Performance analysis of RSA and elliptic
curve cryptography,” vol. 20, no. 4, pp. 625–635, 2018, doi:
10.6633/IJNS.201807.

[4] W. Stallings, Cryptography and Network Security: Principles and
Practice, eight edition, Pearson Education, 2020, ISBN 978-0-13-
670722-6.

[5] A. Hamza and B. Kumar, “A review paper on DES, AES, RSA encryption
standards,” Proceedings of the SMART–2020, IEEE Conference ID:
50582 9th International Conference on System Modeling & Advancement
in Research Trends, 2020, pp. 333–338.
https://doi.org/10.1109/SMART50582.2020.9336800.

[6] M. A. Islam, et al., “A modified and secured RSA public key
cryptosystem based on “n” prime numbers,” Journal of Computer and
Communications, vol. 6, issue 3, pp. 78–90 2018.
https://doi.org/10.4236/jcc.2018.63006.

[7] P. K. Panda, and S. Chattopadhyay, “A hybrid security algorithm for RSA
cryptosystem,” Proceedings of the 2017 4th International Conference on
Advanced Computing and Communication Systems, ICACCS’2017,
2017, pp. 1-6. https://doi.org/10.1109/ICACCS.2017.8014644.

[8] B. S. Mathematics, D. S. B. S, and S. Barbara, “Basic application of
mathematics in cryptography,” Proceedings of the 2020 IEEE
International Conference on Modem Education and Information
Management (ICMEIM), 2020, pp. 871–875.

[9] L. K. Galla, V. S. Koganti, and N. Nuthalapati, “Implementation of
RSA,” Proceedings of the 2016 Int. Conf. Control Instrum. Commun.
Comput. Technol. ICCICCT 2016, 2017, pp. 81–87,
https://doi.org/10.1109/ICCICCT.2016.7987922.

[10] F. Shahid, et al., “PSDS–proficient security over distributed storage: A
method for data transmission in cloud,” IEEE Access, vol. 8, pp. 118285-
118298, 2020. https://doi.org/10.1109/ACCESS.2020.3004433.

[11] Y. Wang, S. Yan, & H. Zhang, “A new quantum algorithm for computing
RSA cipher text period,” Wuhan Univ. J. Nat. Sci. vol. 22, pp. 68–72,
2017. https://doi.org/10.1007/s11859-017-1218-5.

[12] B. Wang, X. Yang, and D. Zhang, “Research on quantum annealing
integer factorization based on different columns,” Frontiers in Physics,
vol. 10, no. June, pp. 1–10, 2022,
https://doi.org/10.3389/fphy.2022.914578.

[13] Y. Wang, H. Zhang, and H. Wang, “Quantum polynomial-time fixed-
point attack for RSA,” China Communications, pp. 25–32, 2018.
https://doi.org/10.1109/CC.2018.8300269.

[14] M. Bunder, A. Nitaj, W. Susilo, and J. Tonien, “A generalized attack on
RSA type cryptosystems,” Theor. Comput. Sci., vol. 1, pp. 1–8, 2017,
https://doi.org/10.1016/j.tcs.2017.09.009.

Getaneh Awulachew’ Zimbele et al. / International Journal of Computing, 22(2) 2023, 238-247

VOLUME 22(2), 2023 247

[15] W. Susilo, W. Susilo, J. Tonien, and G. Yang, “Institutional knowledge
at Singapore Management University – A generalised bound for the
Wiener attack on RSA,” vol. 2020, pp. 1–4, 2020.
https://doi.org/10.1016/j.jisa.2020.102531.

[16] M. Mumtaz, and L. Ping, “Cryptanalysis of a special case of RSA large
decryption exponent using lattice basis reduction method,” Proceedings
of the IEEE 6th International Conference on Computer and
Communication Systems (ICCCS), Chengdu, China, 2021, pp. 714-720,
https://doi.org/10.1109/ICCCS52626.2021.9449268.

[17] J. Mittmann and W. Schindler, “Timing attacks and local timing attacks
against Barrett’s modular multiplication algorithm,” J. Cryptogr. Eng.,
vol. 11, no. 4, pp. 369–397, https://doi.org/10.1007/s13389-020-00254-
3.

[18] C. Shao, H. Li and X. Zhang, “Cryptographic implementation of RSA for
ion fault injection attack,” Proceedings of the 2014 IEEE 11th Consumer
Communications and Networking Conference (CCNC), 2014, pp. 791–
796. https://doi.org/10.1109/CCNC.2014.6994410.

[19] M. Mumtaz and L. Ping, “Forty years of attacks on the RSA
cryptosystem: A brief survey,” Journal of Discrete Mathematical
Sciences and Cryptography, vol. 22, issue 1, pp. 9-29, 2019,
https://doi.org/10.1080/09720529.2018.1564201.

[20] Y. Y. Ogorodnikov, “A combined attack on RSA algorithm by SAT-
approach,” Proceedings of the 2016 Dynamics of Systems, Mechanisms
and Machines, Dynamics 2016. 2017, pp. 1-6.
https://doi.org/10.1109/Dynamics.2016.7819055.

[21] R. Shamir, A. Public, and K. Cryptosystem, “A study and implementation
of RSA cryptosystem,” Computer Science and Engineering Department,
Jadavpur University, arXiv: 1506.04265v1 [cs.CR] 13 Jun 2015.

[22] R. Jaiswal, et al., “Reformed RSA algorithm based on prime number,”
International Journal of Computer Applications, pp. 23-26, 2014.

[23] M. Thangavel, et al., “An enhanced and secured RSA key generation
scheme (ESRKGS),” J. Inf. Secur. Appl., vol. 20, pp. 3–10, 2015.
https://doi.org/10.1016/j.jisa.2014.10.004.

[24] E. Lüy, et al., “Comment on ‘an enhanced and secured RSA key
generation scheme (ESRKGS),” J. Inf. Secur. Appl., vol. 30, pp. 1–2,
2016. https://doi.org/10.1016/j.jisa.2016.03.006.

[25] S. Mathur, et al., “Analysis and design of enhanced RSA algorithm to
improve the security,” Proceedings of the 3rd IEEE International
Conference on Computational Intelligence & Communication
Technology (CICT), Ghaziabad, 2017, pp. 3–7.
https://doi.org/10.1109/CIACT.2017.7977330.

GETANEH AWULACHEW ZIMBELE
(MSc) was born in Majete Town, North
Shoa Zone, Amhara Region, Ethiopia
in 1989. He received the B.S. degree in
Information Technology from Adama
Science and Technology University in
2013 and M.S. degree in Computer
Networks and Security from Debre
Berhan University, Ethiopia, in 2019.

Since 2017, he has been working as a Lecturer with the
Information Technology Department, Debre Berhan
University. He has two local research presented for
conference proceedings and one project at National level.
His research interests are in the area of Information Security
and resource efficient routing algorithms in MANET.

SAMUEL ASFERAW DEMILEW (PhD)
was born in Chagni Town, Gojjam,
Amhara Region, Ethiopia in 1980. He
received the B.A. degree in English
from Bahir Dar University in 2000; M.S.
degree in Information Science from
Addis Ababa University in 2007 and the
Ph.D. degree in Information

Technology from Addis Ababa University, Ethiopia in 2017.
From 2008 to 2009 he used to work as Dean of Engineering
Faculty at Debre Berhan University. Since 2018, he has been
working as an Assistant Professor with the Information
Technology Department, Debre Berhan University. He has
publications on IEEE proceedings and journals. His research
interests include network security, information security, and
wireless network, node geo-localization, energy-efficient
routing in MANET and sensor networks.

