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 ABSTRACT Generative Adversarial Networks (GANs) are a powerful class of deep learning models that can 
generate realistic synthetic data. However, designing and optimizing GANs can be a difficult task due to various 
technical challenges. The article provides a comprehensive analysis of solution methods for GAN performance 
optimization. The research covers a range of GAN design components, including loss functions, activation functions, 
batch normalization, weight clipping, gradient penalty, stability problems, performance evaluation, mini-batch 
discrimination, and other aspects. The article reviews various techniques used to address these challenges and highlights 
the advancements in the field. The article offers an up-to-date overview of the state-of-the-art methods for structuring, 
designing, and optimizing GANs, which will be valuable for researchers and practitioners. The implementation of the 
optimization strategy for the design of standard and deep convolutional GANs (handwritten digits and fingerprints) 
developed by the authors is discussed in detail, the obtained results confirm the effectiveness of the proposed 
optimization approach. 
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I. INTRODUCTION 
ENERATIVE Adversarial Networks (GANs) are a type of 
deep learning algorithm first proposed by Ian Goodfellow 

in 2014 [1]. The primary motivation behind GANs is to create 
high-quality synthetic data for various applications, such as 
image, photo, and video generation [2, 3]. Further 
advancements in GANs development eventually demonstrated 
huge progress in such significant scientific and applied 
domains as anomaly detection [4], cybersecurity [5], medicine 
and drug discovery, forensics, material science, and astronomy 
research [3, 6, 7]. 

A.  BACKGROUND OF GANS 
GANs operate by training two neural networks: a generator 

and a discriminator. The generator takes a random noise vector 
as input and produces a synthetic sample that resembles real 
data; Fig. 1.  

The discriminator takes both real and synthetic samples as 
input and distinguishes between them. The two networks play 
a game-like adversarial training process, with the generator 
attempting to trick the discriminator into “believing” that its 
synthetic samples are “real,” and the discriminator attempting 
to accurately identify real and fake samples [1]. 

 

Figure 1. GAN Architecture. 

The significant advantage of GAN models is that they do 
not require explicit modeling of the probability distribution of 
real data. This makes GANs suitable for generating high-
dimensional, complex data such as images and photos. 

Despite their general success, GANs can be difficult to train 
and require careful fine-tuning of hyperparameters. 
Furthermore, GANs can suffer from mode collapse, in which 
the generator produces only a limited set of samples that fail to 
capture the diversity of real data. Various methods have been 
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proposed to solve these problems, including the use of different 
loss functions, regularization methods, and architectures. 

Overall, GANs have become a crucial tool in the deep 
learning toolkit, facilitating the creation of high-quality 
synthetic data for numerous applications [3]. 

B.  TECHNICAL CHALLENGES IN GAN DESIGN AND 
OPTIMIZATION 
GANs present several technical challenges in their design and 
optimization.  

Vanishing gradients can occur when the discriminator 
becomes too good at distinguishing real from fake samples, 
leading to difficulty for the generator to learn [8].  

Mode collapse can happen when the generator produces 
only a limited set of samples that do not fully capture the 
diversity of the real data [9]. Oscillations may occur when the 
generator and discriminator get stuck in a feedback loop and 
fail to converge to an optimal solution. Evaluation of the 
performance of GANs can be difficult, as there is no clear 
metric for measuring the quality of the generated samples [10]. 

Nevertheless, the primary benefit of GANs is that they 
eliminate the need for explicit modeling of the real data's 
probability distribution. This makes GANs well-suited for 
generating complex and high-dimensional data. 

Addressing these technical challenges requires a 
combination of careful network design, tuning of 
hyperparameters, and novel optimization techniques.  

The main goal of this article is to conduct thorough 
analytical research towards developing new approaches that 
will help to address these challenges and will help to improve 
the performance of GANs for a wide range of applications. 

II.  GAN DESIGN AND OPTIMIZATION TECHNIQUES 
Loss functions play a crucial role in training the generator and 
discriminator networks. There are a variety of loss functions 
available for GANs, and selecting the appropriate loss for a 
specific GAN task is essential for achieving optimal results. It 
requires a deep understanding of the problem domain and 
expertise in the field.  

Selecting the appropriate loss function for GAN models is 
a sophisticated art that combines experimental thinking, 
experience, and theoretical knowledge. It requires careful 
consideration and evaluation of various factors. Let's review 
some of the most prominent examples. 
 
A.  LOSS FUNCTIONS 
One of the key components of every GAN model is the loss 
function used to train the discriminator and generator networks. 
The choice of loss function has a significant impact on the 
stability and quality of the generated output data. With the 
growing interest in GANs, there has been a surge of research in 
developing and improving different loss functions to enhance 
the performance of GANs. 

Let's review some of the most commonly used GAN loss 
functions. By analyzing the characteristics of these loss 
functions, we can gain a better understanding of their strengths 
and limitations, and ultimately advance the state-of-the-art in 
GANs. 

1. Adversarial Loss. Adversarial loss (or initial GAN loss) 
is the loss function used to update the generator weights in the 
GAN training process. The adversarial loss is defined as the 
negative log-likelihood of the discriminator output when the 
generator input is passed through the generator network [1]. 

The loss function of a GAN can be expressed 
mathematically using the following equation [1]: 

𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉(𝐷, 𝐺) = 𝔼𝒙∼ (𝒙)[log 𝐷(𝑥)] + 

+ 𝔼 ∼ ( )[log (1 − 𝐷(𝐺(𝑧)))],                      (1) 

where 𝐺 represents the generator; 𝐷 represents the 
discriminator; 𝑥 is a vector – sample of real data; 𝑧 is noise or 
a latent space vector extracted from a standard normal 
distribution; 𝑝 (𝑧) is a prior on input noise variables; 𝑝 (𝑥) 
is a prior on input real data variables; 𝔼 is an expectation; 𝐷(𝑥) 
is the discriminator’s output that represents the probability that 
𝑥 actually came from the data rather than from 𝐺; 𝑉(𝐷, 𝐺) is 
the value function of 𝐷 and 𝐺 in the two-player minimax game 
[1]. 

Table 1. Adversarial Loss Pros and Cons 

Pros Cons 
High-quality samples.  
Adversarial loss drives the 
generator to create samples 
virtually indistinguishable from real 
data, fostering the creation of high-
quality, authentic-like data. 

Training instability. 
Adversarial loss in GANs can cause 
training instability, especially if the 
discriminator overpowers or the 
generator can't closely mimic real 
data, leading to issues like mode 
collapse or fluctuating loss. 

Flexibility. 
Adversarial loss is adaptable to 
diverse data and applications and 
can enhance generated sample 
quality when combined with other 
loss functions like reconstruction or 
cycle-consistency loss. 

Difficulty in evaluation. 
Assessing GANs' performance via 
adversarial loss is challenging since 
it doesn't directly show how well 
the generator mimics the data 
distribution. Often-used metrics 
like FID or IS may not always 
accurately represent the quality of 
the generated samples. 

Conceptually simple. 
The adversarial loss function is 
straightforward and hence a 
preferred choice for GANs and 
similar generative models. 

Computational cost. 
Adversarial loss is computationally 
demanding, especially for large-
scale GANs with high-dimensional 
data, which complicates GANs' 
scalability for more intricate 
datasets. 

 
2. Binary Cross Entropy (BCE). BCE is a commonly used 

loss function in GANs that measures the difference between the 
discriminator's output and the target label. The BCE loss is used 
to update the discriminator weights during the training process 
and can be described as follows: 

𝐽(𝜃) = − ∑   𝑦( )log ℎ 𝑥( ), 𝜃 +

1 − 𝑦( ) log (1 − ℎ 𝑥( ), 𝜃 )
,               (2) 

where 𝑚 is the number of examples in the entire batch, 

− ∑  is the average loss of the whole batch, ℎ represents 

predictions made by the model, 𝑦 denotes labels for the 
different examples, 𝑥 stands for features that are passed in 
through the prediction, 𝜃 represents parameters of the module 
that is computing the predictions. 

Table 2. BCE Pros and Cons 

Pros Cons 
Easy to compute. 
BCE loss is relatively simple to 
compute and is efficient in terms of 
both time and computation 
resources required for training. 

Can lead to mode collapse. 
Using BCE loss in GANs may 
cause mode collapse, where the 
generator creates limited outputs 
that deceive the discriminator, 
leading to less diverse generated 
samples. 

Effective for binary classification 
tasks. 

Imbalanced class distribution.  
In some cases, the class distribution 
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BCE loss is well suited for binary 
classification tasks, where the 
output is either 0 or 1. 

of the real and fake samples may be 
imbalanced. This can lead to bias in 
the discriminator's predictions, as it 
may focus on the more dominant 
class. 

Encourages the discriminator to 
distinguish real from fake 
samples.  
BCE loss propels the discriminator 
in GANs to differentiate real from 
fake samples by penalizing wrong 
predictions, as it's trained to identify 
if an input is real (label 1) or fake 
(label 0). 

Sensitive to noise. 
BCE loss is sensitive to noise in the 
data. This can cause the 
discriminator to overfit to noisy 
samples, resulting in poor 
performance on unseen data. 

 
3. Wasserstein Loss. Wasserstein loss (L), also known as 

Earth Mover's Distance (EMD), is a distance-based loss 
function that measures the difference between the distribution 
of real and synthetic data. The Wasserstein loss is used to 
update the discriminator weights during the training process 
and has been shown to be effective in stabilizing GAN training. 

The Wasserstein GAN (WGAN) Loss is a modification of 
the standard GAN, where the discriminator outputs a number 
for each sample without classifying it as real or fake. Since the 
output number doesn't need to be between 0 and 1, a threshold 
of 0.5 can't be used to classify samples. Instead, the 
discriminator is trained to give higher scores to real instances 
than to fake ones [11]. 

The WGAN's discriminator is called a “critic” since it can't 
distinguish real from fake samples. While this has theoretical 
significance, practically, it acknowledges that the inputs to the 
loss functions don't necessarily have to be probabilities. 
Wasserstein Loss can be depicted as follows: 

𝐿 =  𝐷(𝑥) −  𝐷 𝐺(𝑧) ,                     (3) 

where 𝐷(𝑥) stands for the critic's output for a real sample, 𝐺(𝑧) 
is the generator's output when given noise 𝑧, 𝐷(𝐺(𝑧)) is the 
critic's output for a fake sample. 

The aim of the discriminator is to maximize this function, 
which involves maximizing the difference between its output 
on real samples and its output on fake samples [11]. 

Table 3. Wasserstein Loss Pros and Cons 

Pros Cons 
Improved stability. 
Wasserstein loss aids in stabilizing 
GAN training as it provides a more 
continuous metric compared to the 
typical binary classification loss 
function used in GANs. 

Computational cost. 
Calculating Wasserstein distance is 
usually more computationally 
intensive than using traditional 
binary classification loss in GANs, 
potentially slowing down the 
training. 

Improved sample quality. 
Wasserstein loss can improve the 
quality of generated samples in 
GANs as it offers a more significant 
and continuous metric to assess the 
difference between real and 
generated samples. 

Sensitivity to architecture. 
The performance of GANs using 
Wasserstein loss can be sensitive to 
the choice of architecture, hyper-
parameters, and regularization 
techniques used. 

Better gradient flow. 
Unlike traditional GANs, which 
suffer from the vanishing gradient 
problem, Wasserstein loss provides 
a more meaningful and stable 
gradient flow during the training 
process. 

Lack of diversity. 
The Wasserstein loss function is not 
specifically designed to encourage 
the generation of diverse samples, 
which can be a disadvantage if 
generating diverse samples is a goal 
of the GAN. 

 
4. Least Squares Loss (LSGAN). LSGAN (V) is a modified 

version of the original GAN that uses a least-squares loss 
function instead of the binary cross-entropy loss. LSGAN has 

been shown to produce higher-quality samples and more stable 
training compared to the original GAN. 

The objective functions for LSGANs can be formulated in 
the following manner [12]: 

𝑚𝑖𝑛 𝑉 (𝐷) =
1

2
𝔼𝒙∼ data (𝒙)[(𝐷(𝑥) − 𝑏) ]

+
1

2
𝔼𝒛∼ 𝒙(𝒛)[(𝐷(𝐺(𝑧)) − 𝑎) ] 

𝑚𝑖𝑛 𝑉 (𝐺) = 𝔼𝒛∼ 𝒛(𝒛)[(𝐷(𝐺(𝑧)) − 𝑐) ],         (4) 

where 𝑉 represents the value function, everything else is 
similar to equation (1) except for 𝑐, which denotes the value 
that 𝐺 wants 𝐷 to “believe” for fake data. 

Table 4. LSGAN Pros and Cons 

Pros Cons 
Robustness.  
The least squares loss is more 
robust to outliers compared to the 
binary cross-entropy loss. This 
means that it can handle situations 
where the generator produces 
samples that are far from the real 
data distribution. 

Sensitivity to outliers.  
While the least squares loss is more 
robust to outliers, it can also be 
more sensitive to them in some 
cases. This means that it can give 
too much importance to outliers and 
not enough to the bulk of the data. 

Mode collapse avoidance. 
The least squares loss has been 
shown to be effective in avoiding 
mode collapse. 

Lack of diversity. 
The least squares loss can 
sometimes lead to a lack of 
diversity in the generated samples, 
as the generator may focus too 
much on matching the mean of the 
real data distribution and not 
enough on capturing its full range. 

Stable training. 
The least squares loss can lead to 
more stable GAN training, as it 
avoids the problem of vanishing 
gradients that can occur with the 
binary cross-entropy loss. 

Requires careful tuning. 
The least squares loss requires 
careful tuning of its 
hyperparameters, such as the 
scaling factor, to achieve optimal 
performance. This can be time-
consuming and challenging for 
practitioners. 

 
5. Hinge Loss. Hinge loss is another commonly used loss 

function in GANs that is based on the maximum margin 
principle. Hinge loss has been shown to be effective in 
stabilizing GAN training and producing high-quality samples 
[13]. 

The mathematical notation for hinge loss is as follows [14]: 

𝐿(𝑦, 𝑓(𝑥))  =  𝑚𝑎𝑥(0, 1 −  𝑦𝑓(𝑥)),              (5) 

where 𝑦 is the true label of a sample, and 𝑓(𝑥) is the predicted 
score for that sample, 𝑚𝑎𝑥 is the maximum function, which 
returns the larger of its two arguments. 

In the context of GANs, the hinge loss is used to train the 
discriminator, where 𝑦 is set to 1 for real samples and -1 for 
fake samples, and 𝑓(𝑥) is the discriminator's output for that 
sample. 

The hinge loss penalizes the model when the predicted score 
for the true label is less than 1. If the score is greater than or 
equal to 1, the loss is 0. 

Table 5. Hinge Loss Pros and Cons 

Pros Cons 
Robust to outliers. 
Hinge loss handles outliers well, 
making it suitable for GANs where 
generated samples may not match 
real samples perfectly. 

Sensitivity to hyperparameters. 
Hinge loss's sensitivity to 
hyperparameters, like the margin 
value, can impact results if chosen 
incorrectly. 

Encourages diversity. Difficulty in convergence. 
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Hinge loss promotes diversity in 
generated samples by penalizing 
their similarity, preventing 
repetition in GAN output. 

Converging hinge loss can be 
challenging, particularly with 
inadequate network design or 
complex datasets. This can lead to 
unstable training and subpar 
generated samples. 

Works well with large datasets. 
Hinge loss works well with large 
datasets because it is 
computationally efficient and can 
handle a large number of samples 
without overfitting. 

Limited applicability. 
Hinge loss might not be appropriate 
for all GANs and datasets. It may 
struggle with datasets of limited 
samples or with GANs employing 
diverse architectures like 
conditional GANs. 

 
6. Maximum Mean Discrepancy (MMD). MMD is a 

distance-based loss function that measures the difference 
between the distribution of real and synthetic data. MMD has 
been shown to be effective in stabilizing GAN training and 
producing high-quality samples [15]. 

In GANs, the generator is trained to minimize the MMD 
distance between the generated and real data distributions, 
which encourages the generated data to match the real data 
distribution. 

Table 6. MMD Pros and Cons 

Pros Cons 
Improved stability. 
MMD improves GAN training by 
promoting similarity between 
generated and real samples, 
preventing mode collapse and other 
issues. 

Limited effectiveness. 
Although MMD enhances GAN 
training stability, it may not capture 
the complete complexity of the data 
distribution, potentially limiting 
sample quality from the generator. 

Flexibility. 
MMD is a versatile distance 
measure for distributions, adaptable 
to various data and applications 
through different kernel functions. 

Hyperparameter tuning. 
MMD requires careful 
hyperparameter selection (e.g., 
kernel function, bandwidth), which 
can be challenging and greatly 
affect GAN performance. 

Efficient computation.  
MMD can be computed efficiently 
using a simple and fast algorithm. 
This makes it a practical choice for 
use in GANs and other machine 
learning applications. 

Computational cost. 
Although MMD is computationally 
efficient, it may struggle with large 
datasets or complex models, 
limiting its practicality for certain 
applications. 

 
It is important to note that there is no universally optimal 

choice of loss function for a given GAN architecture. The 
selection of a suitable loss function for a specific task must take 
into consideration the unique characteristics of the problem at 
hand. As a result, loss functions must be chosen on a case-by-
case basis. 

The suitability of a loss function is dependent on the 
specific requirements of the task, the dataset, and the 
architecture. Therefore, an adaptive approach to the selection 
of a loss function is necessary to achieve optimal performance. 
This often requires the use of experimental techniques to 
explore the performance of different loss functions under 
different conditions. 

B.  ACTIVATION FUNCTIONS 
Activation functions play a critical role in GANs. They are used 
to introduce non-linearity into the generator and discriminator 
networks, which allows the model to learn complex 
relationships between the input and output data. The choice of 
activation function can have a significant impact on the 
performance of the GAN model, its accuracy, and its stability. 

1. Sigmoid. Sigmoid is an activation function that maps the 
input to the range [0,1]. It is defined as: 

Sigmoid (𝑥) = 𝜎(𝑥) =
 ( )

,                 (6) 

where 𝑥 is an input value, 𝜎 is a standard deviation, and 𝑒𝑥𝑝 is 
an exponential function; Fig. 2. 
 

 

Figure 2. Logistic sigmoid activation function.  

 
Sigmoid is commonly used as the activation function for the 

output layer of the generator in GANs to ensure that the 
generated samples are within the desired range [16, 17]. 

2. ReLU (Rectified Linear Unit). ReLU is one of the most 
widely used activation functions in deep learning, including 
GANs [16]. It is a non-linear activation function and can be 
expressed using the following notation: 

𝑓(𝑥) = (𝑥) = 𝑚𝑎𝑥(0, 𝑥),                   (7) 

where 𝑥 is the neuron input value, 𝑚𝑎𝑥 is the output and 
denotes the maximum magnitude between zero and the input 
value; Fig. 3. 
 

 

Figure 3. Rectified linear unit or ReLU – non-linear activation 
function.  

 
ReLU is computationally efficient and allows for faster 
convergence during training. 

3. LeakyReLU. LeakyReLU is a variant of ReLU that solves 
the problem of "dying ReLU," where the gradient of ReLU 
becomes zero for negative inputs, causing the corresponding 
neurons to stop learning [16, 17]. LeakyReLU is defined as: 

LReLU (𝑥) = 𝑚𝑎𝑥(0, 𝑥) +  𝑚 ∗ 𝑚𝑖𝑛(0, 𝑥),         (8) 

where 𝑥 is the neuron input value, 𝑚𝑎𝑥 denotes the maximum 
magnitude between zero and the input value, 𝑚 represents a 
negative slope, 𝑚𝑖𝑛 represents the minimum value between 
zero and 𝑥; Fig. 4. 
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Figure 4. Leaky rectified linear unit or LReLU – linear variant 
of ReLU. 

LeakyReLU allows for some negative values to pass 
through the activation function, providing a more robust 
gradient flow during training [16]. 

4. Tanh (Hyperbolic Tangent). Tanh is an activation 
function that maps the input to the range [-1,1]. It is defined as: 

Tanh (𝑥) = tanh (𝑥) =
 ( )  ( )

 ( )  ( )
,             (9) 

where tanh is a hyperbolic tangent function, 𝑥 is the output of 
the generator, and exp is an exponential function. 
 

 

Figure 5. Hyperbolic tangent or tanh – hyperbolic activation 
function. 

 
The hyperbolic tangent function (tanh) is helpful in GANs 

because it generates values between -1 and 1, compatible with 
the same range as normalized real data. With its smooth 
gradient, it assists in stabilizing the training process and 
mitigates the issue of exploding gradients, though it can still 
suffer from the vanishing gradient problem. Additionally, tanh 
can help the generator network produce a wider range of output 
values, making it more diverse and realistic [16, 17].  

5. Softmax. Softmax is an activation function used for multi-
class classification problems in GANs [16]. It maps the output 
of the model to a probability distribution over multiple classes. 
Softmax is defined as: 

Softmax (𝑥 ) =
( )

∑    
,                       (10) 

where 𝑥  is the output of the i-th neuron in the output layer and 
the sum is taken over all neurons in the output layer. 

Activation functions reviewed above are a critical 
component of GANs that help to introduce non-linearity into 
the models. There is no single “best” activation function, as 
each function has its own set of strengths and weaknesses. 
Sigmoid and Tanh functions are commonly used in GANs for 

their ability to normalize output values between -1 and 1, but 
they suffer from the vanishing gradient problem. ReLU and 
LeakyReLU are popular due to their simplicity and ability to 
address the vanishing gradient problem, but they are not 
suitable for all applications. Softmax is used in multi-class 
classification tasks to generate probability distributions, but it 
is not appropriate for regression tasks. The choice of activation 
function depends on the specific requirements of the task and 
an understanding of the characteristics and trade-offs of each 
function. 

C.  BATCH NORMALIZATION 
The process of normalizing inputs to every layer is referred 

to as batch normalization and is widely utilized in deep neural 
networks. This technique enhances the network's robustness to 
varying input distributions [18]. In the domain of GANs, batch 
normalization serves as a valuable tool to ensure the stability 
of both generator and discriminator network training [19]. 

In a GAN, the generator network leverages a random noise 
vector to generate synthetic images or samples, while the 
discriminator network takes an image as input and endeavors 
to differentiate between genuine and counterfeit images. The 
training of these networks occurs iteratively, wherein the 
generator strives to fabricate images that can deceive the 
discriminator, and the discriminator aims to accurately classify 
both genuine and fake images. 

Batch normalization involves normalizing the inputs to each 
layer of the network based on the statistics of the mini-batch of 
data being processed. Specifically, batch normalization 
involves subtracting the mean and dividing by the standard 
deviation of the input values for each layer. This has the effect 
of centering and scaling the data, making it easier for the 
network to learn [18, 19, 20]. 

In GANs, batch normalization is typically applied to the 
inputs of the discriminator network, as this can help to reduce 
the problem of mode collapse. By normalizing the inputs to the 
discriminator, the network is less likely to overfit specific 
image features and can better distinguish between real and fake 
images [21]. 

Batch normalization can also be applied to the generator 
network, but this is less common as it can make the network 
more sensitive to small changes in the input noise vector, which 
can lead to instability in the training process. However, some 
variations of GANs, such as conditional GANs, may benefit 
from batch normalization in the generator network [12]. 

D.  WEIGHT CLIPPING AND GRADIENT PENALTY 
Weight clipping and gradient penalty are two additional 

techniques commonly used in the training of GANs to improve 
stability and encourage the generation of higher-quality images 
[22]. 

Weight clipping refers to a strategy employed to prevent the 
weights of the discriminator network from growing excessively 
large during the training process. This technique involves 
establishing a predetermined threshold value and, after each 
training iteration, capping the discriminator's weights to ensure 
they remain under this threshold. Through restricting the 
weights to a predetermined range, weight clipping can mitigate 
the issue of mode collapse, and curtail the discriminator from 
becoming excessively “confident” in its predictions [22]. 

However, weight clipping has some drawbacks. First, it can 
result in the loss of important discriminative information, 
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particularly when the weights are clipped too aggressively. 
Additionally, weight clipping can lead to instability in the 
training process, particularly when used in combination with 
other techniques like batch normalization [22]. 

While weight clipping can be an effective technique for 
preventing discriminator weights from becoming too large 
during training, it has a few potential drawbacks [22, 23]. 

First, weight clipping can lead to gradient vanishing or 
exploding, particularly when the threshold is set too low or too 
high, respectively. This can hinder the learning process and 
negatively impact the performance of the model. 

Second, weight clipping can result in a non-smooth 
optimization objective, which can make it more difficult to find 
the global optimum during training. 

Third, weight clipping can be difficult to set optimally, and 
the optimal value may vary depending on the specific dataset 
and model architecture. 

Lastly, weight clipping can reduce the expressive power of 
the model and limit its ability to capture complex patterns in 
the data. 

By penalizing the discriminator for producing gradients that 
deviate from the desired values, gradient penalty can help to 
reduce the problem of mode collapse and improve the overall 
quality of generated images. Additionally, gradient penalty has 
been shown to be more effective than weight clipping in 
improving the stability and convergence of the GAN training 
process [23]. 

However, gradient penalty has some limitations as well. 
First, it can be computationally expensive to calculate, 
particularly for large GAN models with many layers. 
Additionally, the effectiveness of gradient penalty depends on 
the specific choice of penalty function and hyperparameters 
used and may require careful tuning to achieve optimal results. 
Gradient penalty can lead to vanishing or exploding gradients, 
particularly when the penalty term is set too high. This can 
hinder the learning process and negatively impact the 
performance of the model [23]. 

One-Lipschitz (1-L) continuity is a property of functions 
that measures how much their output can change when the 
input changes by a small amount. In the context of GANs, 1-L 
continuity is often used to ensure the stability and convergence 
of the training process by preventing the discriminator function 
from becoming too sensitive to small changes in the input data. 
By enforcing this constraint, GANs can produce more stable 
and higher-quality generated samples [11, 23]. 

If the GAN discriminator is too sensitive to small changes 
in the input data, it may assign very different scores to two 
similar images, even if they are both real. This can lead to 
instability and poor performance in GAN. 

To address this issue, some GANs use gradient penalty, 
which enforces 1-L continuity by adding a regularization term 
to the discriminator loss function. This term penalizes the 
discriminator if its gradients with respect to the input data 
exceed a certain threshold, which helps to ensure that the 
discriminator is not too sensitive to small changes in the input 
[11, 23]. 

Overall, enforcing 1-L continuity is an important 
consideration when designing and training GANs, as it can help 
to prevent instability and improve the quality of generated data. 

In summary, weight clipping and gradient penalty are two 
additional techniques commonly used in the training of GANs 
to improve stability and encourage the generation of higher 
quality images. While weight clipping can help prevent the 

discriminator from becoming too “confident” in its predictions, 
gradient penalty can encourage the discriminator to produce 
more realistic gradients and improve the overall quality of 
generated images. However, both techniques have limitations 
and must be carefully tuned to achieve optimal results [22, 23]. 

E.  STABILITY PROBLEM 
Stability is a major challenge in training GANs and refers to 

the difficulty of maintaining a balance between the generator 
and discriminator networks during training. Instability can 
manifest in a number of ways, such as oscillating or exploding 
loss functions, vanishing gradients, or mode collapse [1, 19, 
22]. 

There are several techniques that can be used to address 
stability issues in GANs, including the ones already mentioned 
such as batch normalization, weight clipping, and gradient 
penalty [24]. In addition to these, some other commonly used 
techniques to improve stability in GANs are: 

1. One-sided Label Smoothing. This technique involves 
smoothing the labels for the real images to be less than 1 and 
the labels for the fake images to be greater than 0. By doing so, 
the discriminator is encouraged to be less certain in its 
predictions, which can help to prevent it from becoming too 
dominant during training [19, 25]. 

2. Feature Matching. Feature matching involves modifying 
the generator's loss function to encourage the generated images 
to match the intermediate features extracted by the 
discriminator, rather than just the final output. By doing so, the 
generator is encouraged to produce more diverse images, and 
the discriminator is less likely to overfit to specific image 
features [19]. 

3. Spectral Normalization. Spectral normalization involves 
normalizing the weights of the discriminator based on the 
spectral norm of each weight matrix. This can help to reduce 
the Lipschitz constant of the discriminator and improve the 
stability of the training process [26]. 

3. Diversity Regularization. Diversity regularization 
involves modifying the generator's loss function to encourage 
the production of diverse images, by penalizing the generator 
for generating similar images. This can help to reduce the 
problem of mode collapse and improve the overall quality of 
generated images [27]. 

4. Dropout. Dropout is a regularization technique used in 
the generator network of GANs to prevent overfitting and 
improve generalization performance. It works by randomly 
deactivating a proportion of the neurons during each training 
iteration, forcing the generator to rely on different subsets of 
neurons to generate samples. Dropout has been shown to be 
effective in preventing overfitting and improving the 
generalization performance of GANs, but its application 
requires careful tuning of the dropout rate and selection of the 
layers to apply dropout to [42]. 

These techniques are not mutually exclusive and can be 
combined depending on the specific needs of a GAN model. 
Ultimately, achieving stability in GANs requires careful tuning 
of the model architecture, hyperparameters, and training 
procedure, as well as the use of appropriate techniques to 
address stability issues. 

F.  TRANSPOSED CONVOLUTION 
Transposed convolution, also known as deconvolution or 

fractionally-strided convolution, is a key operation in many 
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GANs. It is used in the generator network to upsample the low-
resolution feature maps produced by the initial layers of the 
network [28]. 

The transposed convolution operation is essentially the 
reverse of a regular convolution operation. In a regular 
convolution operation, a kernel is applied to the input image to 
produce a set of output feature maps. In a transposed 
convolution operation, a kernel is applied to the output feature 
maps to produce a set of upsampled feature maps [28]. 

Transposed convolution is typically used in conjunction 
with a stride parameter to perform upsampling. The stride 
parameter determines the spacing between the output pixels, 
and by setting it to a value greater than 1, the operation 
effectively performs upsampling. For instance, a stride of 2 will 
double the resolution of the feature maps [28]. 

One important consideration when using transposed 
convolution is the choice of padding. In regular convolution, 
the output size is smaller than the input size due to the 
convolution operation "removing" some pixels around the 
edges. In transposed convolution, the output size can be larger 
than the input size if appropriate padding is applied. The choice 
of padding can affect the quality of the generated images and is 
an important hyperparameter to consider when designing a 
GAN-based model [28]. 

Transposed convolution allows the generator to produce 
high-resolution images from low-resolution inputs. By using a 
series of transposed convolution layers to gradually increase 
the resolution of the feature maps, the generator can produce 
images that are much larger and more complex than the initial 
input noise vector [29]. 

Although transposed convolution is a powerful technique, it 
is not without its challenges. One issue is that it can generate 
artifacts and checkerboard patterns in the resulting images. 
Another potential challenge is that training can be difficult, 
especially when using large stride values or deep neural 
networks. This is due to the operation's ability to amplify small 
errors in the input, which can result in unstable training. 
However, these challenges can be addressed by carefully 
tuning the transposed convolution parameters, such as 
adjusting the kernel sizes and strides, implementing skip 
connections, or using alternative upsampling techniques [29]. 

To conclude, transposed convolution is a valuable asset in 
the GAN toolkit as it enables the creation of high-quality, high-
resolution images from low-dimensional input vectors. 

G.  CURSE OF DIMENSIONALITY 
The term curse of dimensionality refers to the difficulties 

that arise when handling high-dimensional data. In the context 
of GANs, this can present significant challenges for both the 
generator and discriminator networks [1, 30]. 

One of the main challenges posed by the curse of 
dimensionality is the sparsity of high-dimensional data. As the 
dimensionality of the input data increases, the amount of data 
required to fully cover the input space increases exponentially. 
This can make it difficult to train GANs on high-dimensional 
data, as the amount of training data required to achieve good 
performance can quickly become prohibitively large [1]. 

Another challenge posed by the curse of dimensionality is 
the increased complexity of the generator and discriminator 
networks. As the dimensionality of the input data increases, the 
number of parameters in the generator and discriminator 
networks also increases. This can make it more difficult to train 
the networks, as the optimization problem becomes more 

complex, and the risk of overfitting increases [1]. 
Several approaches have been proposed to tackle the curse 

of dimensionality in GANs, such as dimensionality reduction, 
regularization, and transfer learning. Dimensionality reduction 
can be leveraged to decrease the input data's dimensionality, 
thus facilitating GAN training. Regularization methods can be 
utilized to prevent overfitting and improve the networks' 
generalization capacity. Transfer learning can be applied to 
benefit from pre-trained models on related tasks, which can 
reduce the amount of training data required for optimal 
performance [16, 30]. 

III.  EVALUATION OF GAN PERFORMANCE 
Due to the absence of intrinsic evaluation metrics, assessing the 
performance of GANs can be challenging. Their performance 
is often evaluated using metrics such as Fréchet inception 
distance (FID) and Inception score, which measure the quality 
and diversity of the generated images. In addition to FID and 
Inception score, precision and recall, as well as Perceptual Path 
Length (PPL), can be employed to comprehensively evaluate 
the performance of GANs. Let’s review these metrics in greater 
detail. 

1. Density estimation. Density estimation is a fundamental 
aspect of GANs, as the generator network learns to model the 
underlying distribution of the input data. The quality of the 
generated samples is directly related to the accuracy of the 
underlying distribution learned by the generator network. As a 
result, density estimation plays a crucial role in both training 
and evaluating GANs and is closely related to the performance 
evaluation metrics used for GAN-generated images [1, 8]. 

2. Fréchet inception distance (FID). FID is a commonly 
used metric for evaluating the quality of GAN-generated 
images. It measures the distance between the feature 
representations of real and generated images, as computed by a 
pre-trained Inception network. Lower FID scores indicate 
better quality generated images [19, 31]. 

3. Inception score. The Inception score is another 
commonly used metric for evaluating the quality of GAN-
generated images. It measures the diversity and quality of 
generated images by computing the entropy of the predicted 
class labels for each image, and then taking the exponent of the 
mean entropy [19, 32]. 

4. Precision and recall. Precision and recall are metrics 
commonly used in classification tasks, but they can also be 
used to evaluate the performance of GANs. Precision measures 
the proportion of generated images that are classified as real, 
while recall measures the proportion of real images that are 
classified as such [33]. 

5. Perceptual Path Length (PPL). PPL is a metric for 
evaluating the diversity of GAN-generated images. It measures 
the average distance in feature space between pairs of images 
that are near each other in latent space. Lower PPL scores 
indicate greater diversity and higher quality generated images 
[34, 35]. 

Performance evaluation is an essential aspect of any 
machine learning model, and GANs are no exception. In the 
context of GANs, the evaluation is particularly challenging due 
to the absence of a clear objective function and the subjective 
nature of the generated samples' quality. The reviewed 
evaluation metrics are designed to provide a quantitative 
measure of GANs' performance and guide the development and 
improvement of GAN architectures. As this type of neural 
network continues to advance and finds new applications, the 
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development of more effective and robust performance 
evaluation techniques will remain an active area of research. 

IV. ADDITIONAL GAN TECHNIQUES 
There are additional methods that can improve the performance 
of GAN-based models. Let's review some of them.  
 
A.  ONE-SIDED LABEL SMOOTHING 
One-sided label smoothing is a technique used to improve the 
generalization performance of GANs. It involves modifying the 
labels used for the discriminator network during training, by 
replacing the binary labels of 0 and 1 with smoothed labels of 0 
and α, where α is a value between 0 and 1. 

The purpose of label smoothing is to prevent the 
discriminator from becoming too “confident” in its predictions, 
which can lead to overfitting and poor generalization 
performance. By smoothing the labels, the discriminator is 
encouraged to be less certain in its predictions, which can help to 
improve the overall performance of the GAN model. 

One-sided label smoothing is called "one-sided" because 
only the positive label (i.e., the label for real data) is smoothed, 
while the negative label (i.e., the label for generated data) is left 
unchanged. This is because smoothing the negative label can 
lead to unstable training and worse performance [19, 26]. 

B.  MINI-BATCH DISCRIMINATION 
Mini-batch discrimination is a GAN technique that enhances 

the diversity and quality of generated images. It integrates an 
extra layer to the discriminator network, which calculates a 
distance measure between the features of generated images and 
those of other images within the same mini-batch [19]. 

The purpose of mini-batch discrimination is to encourage the 
generator network to produce more diverse images by penalizing 
it for generating images that are too similar to each other. This 
can help to prevent mode collapse. 

The distance metric used in mini-batch discrimination can 
take many forms, but a commonly used approach is to compute 
the L1 or L2 distance between the features of the generated 
images and the features of other images in the same mini-batch. 
The resulting distance values are then concatenated with the 
features of the generated images and passed through the 
discriminator network. 

L1 and L2 distances are two types of distance metrics used in 
machine learning to measure the difference or similarity between 
two vectors. The L1 distance, also known as the Manhattan 
distance, is the sum of the absolute differences between the 
corresponding elements of two vectors. The L2 distance, also 
known as Euclidean distance, is the square root of the sum of the 
squared differences between the corresponding elements of two 
vectors. 

Overall, mini-batch discrimination is a simple and effective 
technique for improving the diversity and quality of GAN-
generated images, by encouraging the generator network to 
produce more diverse images and preventing mode collapse. It is 
particularly useful for generating high-resolution images or for 
tasks where the target distribution has many modes [19]. 

C.  SAMPLING AND TRUNCATION TRICK 
The sampling and truncation trick is a technique used to improve 
the diversity and quality of GAN-generated images. It involves 

randomly sampling the latent space of the generator network and 
truncating the samples to a certain percentile of their distribution. 
This can help to encourage the generation of diverse and high-
quality images [36]. 

V.  ALGORITHMS FOR IMPLEMENTING OPTIMIZATION 
STRATEGY 
In order to enhance the performance of GAN models, 
optimization algorithms based on gradient descent have been 
explored, such as SGD, RMSProp, AdaGrad, Momentum, 
Adadelta, Adagrad, and ADAM [37].  

1. Stochastic Gradient Descent (SGD) is a simple and widely-
used optimization algorithm for neural networks, which updates 
the model parameters by computing the gradient of the loss 
function with respect to the parameters and adjusting them in the 
opposite direction of the gradient. 

2. RMSProp is a gradient-based optimization algorithm that 
adapts the learning rate for each parameter based on the moving 
average of squared gradients, which reduces the impact of noisy 
gradients. 

3. AdaGrad adapts the learning rate for each parameter based 
on the sum of the squares of past gradients, which gives larger 
updates for infrequent parameters and smaller updates for 
frequent ones. 

4. Momentum uses a moving average of past gradients to 
accelerate SGD, which helps to avoid local minima and converge 
faster. 

5. Adadelta is an extension of the AdaGrad algorithm that 
adapts the learning rate based on the moving average of gradients 
and updates, which further reduces the impact of noisy gradients. 

6. ADAM adapts the learning rate for each parameter based on 
the first and second moments of the gradients, which results in 
more robust convergence and improved performance compared 
to other optimization algorithms. 

Among these algorithms, ADAM has been shown to achieve 
superior performance compared to RMSProp, regardless of 
hyper-parameter settings, as demonstrated by experimental 
evaluation with logistic regression, multi-layer neural networks, 
and convolutional neural networks [37]. 

The optimization of GANs still remains an active research 
area, with ongoing efforts directed towards developing 
mathematical foundations and improving software and hardware 
implementations. 

VI.  OPTIMIZATION STRATEGY IN GAN DESIGN: 
EXPERIMENTAL RESULTS 
In order to evaluate the effectiveness of some of the reviewed 
methods and approaches for optimizing GAN performance, we 
conducted experimental tests on two similar GAN models: the 
standard GAN and DCGAN with a BCE loss function. We 
trained the GAN model on the MNIST dataset, and the DCGAN 
model on the Sokoto Coventry Fingerprint Dataset with similar 
training and testing setups. We performed the training in a web-
based Kaggle environment using a GPU as the main processing 
unit. The models were trained for a fixed number of 
epochs [6, 7]. 

We used Keras and PyTorch as the two main libraries, with 
Keras for GAN and PyTorch for DCGAN. 

We used ADAM as an optimization algorithm and compared 
its performance to different benchmarks and the performance 
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indicators of other optimizers such as RMSProp and SGD. We 
analyzed their ability to optimize the standard GAN and 
DCGAN models. Our experimental results showed that Adam 
outperformed the other optimization algorithms in terms of 
convergence speed and final performance for both models. 

For the standard GAN, we used Adam for both generator and 
discriminator models with a learning rate of 0.0002 and a beta_1 
parameter of 0.5. 

For DCGAN, we also applied Adam for both networks, with 
the same beta1 parameter but set two different learning rates for 
the generator and discriminator – 0.0001 and 0.0002, 
respectively. 

Next, we tested the effectiveness of dropout as a regularization 
technique for improving GAN model performance and batch 
normalization for DCGAN. 

Both techniques appeared to be effective and simple 
approaches for improving the stability and convergence speed of 
the standard GAN and DCGAN models. 

We trained the generator and discriminator alternately, with 
the discriminator trained first and then the generator [6, 7]. 

Below are two samples of synthetic images generated by our 
GAN and DCGAN models (Fig. 6 and Fig. 7). 

 

 

Figure 6. GAN-generated samples (trained on MNIST). 

 

 

Figure 7. DCGAN-generated samples (trained on 
SOCOFing). 

The challenges we faced included: 
 High computational demands of the models. 
 Overall low-speed performance. 
 High rates of mode collapse. 
 Low quality of the generated data in terms of accuracy. 

Moving forward, we plan to practically implement all the 
design methods listed in the article into our newly developed 
GAN-based anomaly detection system, which also incorporates 
a fuzzy logic component. With the optimal configuration of 
hyperparameters, the use of appropriate optimization techniques, 
and the correct choice of evaluation metrics, authors expect to 
achieve high-performance results. 

Overall, our experiments demonstrate the effectiveness of 
these techniques in improving GAN performance and highlight 
the importance of selecting appropriate optimization approaches 
for specific GAN models.  

VII.  CONCLUSION AND FUTURE RESEARCH 
DIRECTIONS 
The article provides a comprehensive analysis of the technical 

peculiarities and challenges involved in designing and 
optimizing Generative Adversarial Networks to generate 
realistic, qualitative synthetic data of various range of types.  

Through a range of topics, including loss functions, 
activation functions, batch normalization, weight clipping, 
gradient penalty, stability problems, performance evaluation, 
and others, various techniques used to address these challenges 
are reviewed, highlighting recent advancements in the field. 

Moving forward, there is a need for further research into the 
development of more efficient and effective GAN optimization 
techniques, as well as their practical applications in various 
fields such as medicine, cybersecurity, computer vision, 
robotics, graphics, data augmentation, and intelligent systems 
[38-41].  

The conducted analysis aims to provide a better 
understanding of how GAN models can be improved in terms 
of performance and computational efficiency. Despite the huge 
spike in popularity of large language models like GPT-4 and 
diffusion models like Stable Diffusion, GANs still possess the 
potential to significantly contribute to scientific research, 
technology, and business, and thus should be thoroughly 
researched. Also, the provided analysis gives a better intuition 
on that GANs should be designed and fine-tuned carefully 
taking into account a particular area of application. Hence, the 
analyzed materials have practical value for researchers in the 
field. 

The continued improvement of GAN architectural 
optimization research is an essential area of focus for 
researchers and domain experts. By addressing the technical 
challenges outlined in this article and building upon recent 
advancements in the field, we can gain a more comprehensive 
understanding of GANs and harness their potential to create 
new, innovative solutions to complex problems. 
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