

292 VOLUME 22(3), 2023

Date of publication SEP-30, 2023, date of current version JUN-25, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.3.3223

Optimization Strategy for Generative
Adversarial Networks Design

OLEKSANDR STRIUK 1), YURIY KONDRATENKO 2,1)
1Petro Mohyla Black Sea National University, 10 68th Desantnykiv st., Mykolaiv, 54003, Ukraine

oleksandr.striuk@gmail.com
2 Institute of Artificial Intelligence Problems of Ministry of Education and Science and National Academy of Sciences of Ukraine, 11/5 Mala Zhytomyrska

st., Kyiv, 01001, Ukraine
y_kondrat2002@yahoo.com

Corresponding author: Oleksandr Striuk (e-mail: oleksandr.striuk@gmail.com).

 ABSTRACT Generative Adversarial Networks (GANs) are a powerful class of deep learning models that can
generate realistic synthetic data. However, designing and optimizing GANs can be a difficult task due to various
technical challenges. The article provides a comprehensive analysis of solution methods for GAN performance
optimization. The research covers a range of GAN design components, including loss functions, activation functions,
batch normalization, weight clipping, gradient penalty, stability problems, performance evaluation, mini-batch
discrimination, and other aspects. The article reviews various techniques used to address these challenges and highlights
the advancements in the field. The article offers an up-to-date overview of the state-of-the-art methods for structuring,
designing, and optimizing GANs, which will be valuable for researchers and practitioners. The implementation of the
optimization strategy for the design of standard and deep convolutional GANs (handwritten digits and fingerprints)
developed by the authors is discussed in detail, the obtained results confirm the effectiveness of the proposed
optimization approach.

 KEYWORDS artificial intelligence; machine learning; deep learning; generative adversarial network; design;
optimization; loss function.

I. INTRODUCTION
ENERATIVE Adversarial Networks (GANs) are a type of
deep learning algorithm first proposed by Ian Goodfellow

in 2014 [1]. The primary motivation behind GANs is to create
high-quality synthetic data for various applications, such as
image, photo, and video generation [2, 3]. Further
advancements in GANs development eventually demonstrated
huge progress in such significant scientific and applied
domains as anomaly detection [4], cybersecurity [5], medicine
and drug discovery, forensics, material science, and astronomy
research [3, 6, 7].

A. BACKGROUND OF GANS
GANs operate by training two neural networks: a generator

and a discriminator. The generator takes a random noise vector
as input and produces a synthetic sample that resembles real
data; Fig. 1.

The discriminator takes both real and synthetic samples as
input and distinguishes between them. The two networks play
a game-like adversarial training process, with the generator
attempting to trick the discriminator into “believing” that its
synthetic samples are “real,” and the discriminator attempting
to accurately identify real and fake samples [1].

Figure 1. GAN Architecture.

The significant advantage of GAN models is that they do
not require explicit modeling of the probability distribution of
real data. This makes GANs suitable for generating high-
dimensional, complex data such as images and photos.

Despite their general success, GANs can be difficult to train
and require careful fine-tuning of hyperparameters.
Furthermore, GANs can suffer from mode collapse, in which
the generator produces only a limited set of samples that fail to
capture the diversity of real data. Various methods have been

G

Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

VOLUME 22(3), 2023 293

proposed to solve these problems, including the use of different
loss functions, regularization methods, and architectures.

Overall, GANs have become a crucial tool in the deep
learning toolkit, facilitating the creation of high-quality
synthetic data for numerous applications [3].

B. TECHNICAL CHALLENGES IN GAN DESIGN AND
OPTIMIZATION
GANs present several technical challenges in their design and
optimization.

Vanishing gradients can occur when the discriminator
becomes too good at distinguishing real from fake samples,
leading to difficulty for the generator to learn [8].

Mode collapse can happen when the generator produces
only a limited set of samples that do not fully capture the
diversity of the real data [9]. Oscillations may occur when the
generator and discriminator get stuck in a feedback loop and
fail to converge to an optimal solution. Evaluation of the
performance of GANs can be difficult, as there is no clear
metric for measuring the quality of the generated samples [10].

Nevertheless, the primary benefit of GANs is that they
eliminate the need for explicit modeling of the real data's
probability distribution. This makes GANs well-suited for
generating complex and high-dimensional data.

Addressing these technical challenges requires a
combination of careful network design, tuning of
hyperparameters, and novel optimization techniques.

The main goal of this article is to conduct thorough
analytical research towards developing new approaches that
will help to address these challenges and will help to improve
the performance of GANs for a wide range of applications.

II. GAN DESIGN AND OPTIMIZATION TECHNIQUES
Loss functions play a crucial role in training the generator and
discriminator networks. There are a variety of loss functions
available for GANs, and selecting the appropriate loss for a
specific GAN task is essential for achieving optimal results. It
requires a deep understanding of the problem domain and
expertise in the field.

Selecting the appropriate loss function for GAN models is
a sophisticated art that combines experimental thinking,
experience, and theoretical knowledge. It requires careful
consideration and evaluation of various factors. Let's review
some of the most prominent examples.

A. LOSS FUNCTIONS
One of the key components of every GAN model is the loss
function used to train the discriminator and generator networks.
The choice of loss function has a significant impact on the
stability and quality of the generated output data. With the
growing interest in GANs, there has been a surge of research in
developing and improving different loss functions to enhance
the performance of GANs.

Let's review some of the most commonly used GAN loss
functions. By analyzing the characteristics of these loss
functions, we can gain a better understanding of their strengths
and limitations, and ultimately advance the state-of-the-art in
GANs.

1. Adversarial Loss. Adversarial loss (or initial GAN loss)
is the loss function used to update the generator weights in the
GAN training process. The adversarial loss is defined as the
negative log-likelihood of the discriminator output when the
generator input is passed through the generator network [1].

The loss function of a GAN can be expressed
mathematically using the following equation [1]:

𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉(𝐷, 𝐺) = 𝔼𝒙∼ (𝒙)[log 𝐷(𝑥)] +

+ 𝔼 ∼ ()[log (1 − 𝐷(𝐺(𝑧)))], (1)

where 𝐺 represents the generator; 𝐷 represents the
discriminator; 𝑥 is a vector – sample of real data; 𝑧 is noise or
a latent space vector extracted from a standard normal
distribution; 𝑝 (𝑧) is a prior on input noise variables; 𝑝 (𝑥)
is a prior on input real data variables; 𝔼 is an expectation; 𝐷(𝑥)
is the discriminator’s output that represents the probability that
𝑥 actually came from the data rather than from 𝐺; 𝑉(𝐷, 𝐺) is
the value function of 𝐷 and 𝐺 in the two-player minimax game
[1].

Table 1. Adversarial Loss Pros and Cons

Pros Cons
High-quality samples.
Adversarial loss drives the
generator to create samples
virtually indistinguishable from real
data, fostering the creation of high-
quality, authentic-like data.

Training instability.
Adversarial loss in GANs can cause
training instability, especially if the
discriminator overpowers or the
generator can't closely mimic real
data, leading to issues like mode
collapse or fluctuating loss.

Flexibility.
Adversarial loss is adaptable to
diverse data and applications and
can enhance generated sample
quality when combined with other
loss functions like reconstruction or
cycle-consistency loss.

Difficulty in evaluation.
Assessing GANs' performance via
adversarial loss is challenging since
it doesn't directly show how well
the generator mimics the data
distribution. Often-used metrics
like FID or IS may not always
accurately represent the quality of
the generated samples.

Conceptually simple.
The adversarial loss function is
straightforward and hence a
preferred choice for GANs and
similar generative models.

Computational cost.
Adversarial loss is computationally
demanding, especially for large-
scale GANs with high-dimensional
data, which complicates GANs'
scalability for more intricate
datasets.

2. Binary Cross Entropy (BCE). BCE is a commonly used

loss function in GANs that measures the difference between the
discriminator's output and the target label. The BCE loss is used
to update the discriminator weights during the training process
and can be described as follows:

𝐽(𝜃) = − ∑   𝑦()log ℎ 𝑥(), 𝜃 +

1 − 𝑦() log (1 − ℎ 𝑥(), 𝜃)
, (2)

where 𝑚 is the number of examples in the entire batch,

− ∑  is the average loss of the whole batch, ℎ represents

predictions made by the model, 𝑦 denotes labels for the
different examples, 𝑥 stands for features that are passed in
through the prediction, 𝜃 represents parameters of the module
that is computing the predictions.

Table 2. BCE Pros and Cons

Pros Cons
Easy to compute.
BCE loss is relatively simple to
compute and is efficient in terms of
both time and computation
resources required for training.

Can lead to mode collapse.
Using BCE loss in GANs may
cause mode collapse, where the
generator creates limited outputs
that deceive the discriminator,
leading to less diverse generated
samples.

Effective for binary classification
tasks.

Imbalanced class distribution.
In some cases, the class distribution

 Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

294 VOLUME 22(3), 2023

BCE loss is well suited for binary
classification tasks, where the
output is either 0 or 1.

of the real and fake samples may be
imbalanced. This can lead to bias in
the discriminator's predictions, as it
may focus on the more dominant
class.

Encourages the discriminator to
distinguish real from fake
samples.
BCE loss propels the discriminator
in GANs to differentiate real from
fake samples by penalizing wrong
predictions, as it's trained to identify
if an input is real (label 1) or fake
(label 0).

Sensitive to noise.
BCE loss is sensitive to noise in the
data. This can cause the
discriminator to overfit to noisy
samples, resulting in poor
performance on unseen data.

3. Wasserstein Loss. Wasserstein loss (L), also known as

Earth Mover's Distance (EMD), is a distance-based loss
function that measures the difference between the distribution
of real and synthetic data. The Wasserstein loss is used to
update the discriminator weights during the training process
and has been shown to be effective in stabilizing GAN training.

The Wasserstein GAN (WGAN) Loss is a modification of
the standard GAN, where the discriminator outputs a number
for each sample without classifying it as real or fake. Since the
output number doesn't need to be between 0 and 1, a threshold
of 0.5 can't be used to classify samples. Instead, the
discriminator is trained to give higher scores to real instances
than to fake ones [11].

The WGAN's discriminator is called a “critic” since it can't
distinguish real from fake samples. While this has theoretical
significance, practically, it acknowledges that the inputs to the
loss functions don't necessarily have to be probabilities.
Wasserstein Loss can be depicted as follows:

𝐿 = 𝐷(𝑥) − 𝐷 𝐺(𝑧) , (3)

where 𝐷(𝑥) stands for the critic's output for a real sample, 𝐺(𝑧)
is the generator's output when given noise 𝑧, 𝐷(𝐺(𝑧)) is the
critic's output for a fake sample.

The aim of the discriminator is to maximize this function,
which involves maximizing the difference between its output
on real samples and its output on fake samples [11].

Table 3. Wasserstein Loss Pros and Cons

Pros Cons
Improved stability.
Wasserstein loss aids in stabilizing
GAN training as it provides a more
continuous metric compared to the
typical binary classification loss
function used in GANs.

Computational cost.
Calculating Wasserstein distance is
usually more computationally
intensive than using traditional
binary classification loss in GANs,
potentially slowing down the
training.

Improved sample quality.
Wasserstein loss can improve the
quality of generated samples in
GANs as it offers a more significant
and continuous metric to assess the
difference between real and
generated samples.

Sensitivity to architecture.
The performance of GANs using
Wasserstein loss can be sensitive to
the choice of architecture, hyper-
parameters, and regularization
techniques used.

Better gradient flow.
Unlike traditional GANs, which
suffer from the vanishing gradient
problem, Wasserstein loss provides
a more meaningful and stable
gradient flow during the training
process.

Lack of diversity.
The Wasserstein loss function is not
specifically designed to encourage
the generation of diverse samples,
which can be a disadvantage if
generating diverse samples is a goal
of the GAN.

4. Least Squares Loss (LSGAN). LSGAN (V) is a modified

version of the original GAN that uses a least-squares loss
function instead of the binary cross-entropy loss. LSGAN has

been shown to produce higher-quality samples and more stable
training compared to the original GAN.

The objective functions for LSGANs can be formulated in
the following manner [12]:

𝑚𝑖𝑛 𝑉 (𝐷) =
1

2
𝔼𝒙∼ data (𝒙)[(𝐷(𝑥) − 𝑏)]

+
1

2
𝔼𝒛∼ 𝒙(𝒛)[(𝐷(𝐺(𝑧)) − 𝑎)]

𝑚𝑖𝑛 𝑉 (𝐺) = 𝔼𝒛∼ 𝒛(𝒛)[(𝐷(𝐺(𝑧)) − 𝑐)], (4)

where 𝑉 represents the value function, everything else is
similar to equation (1) except for 𝑐, which denotes the value
that 𝐺 wants 𝐷 to “believe” for fake data.

Table 4. LSGAN Pros and Cons

Pros Cons
Robustness.
The least squares loss is more
robust to outliers compared to the
binary cross-entropy loss. This
means that it can handle situations
where the generator produces
samples that are far from the real
data distribution.

Sensitivity to outliers.
While the least squares loss is more
robust to outliers, it can also be
more sensitive to them in some
cases. This means that it can give
too much importance to outliers and
not enough to the bulk of the data.

Mode collapse avoidance.
The least squares loss has been
shown to be effective in avoiding
mode collapse.

Lack of diversity.
The least squares loss can
sometimes lead to a lack of
diversity in the generated samples,
as the generator may focus too
much on matching the mean of the
real data distribution and not
enough on capturing its full range.

Stable training.
The least squares loss can lead to
more stable GAN training, as it
avoids the problem of vanishing
gradients that can occur with the
binary cross-entropy loss.

Requires careful tuning.
The least squares loss requires
careful tuning of its
hyperparameters, such as the
scaling factor, to achieve optimal
performance. This can be time-
consuming and challenging for
practitioners.

5. Hinge Loss. Hinge loss is another commonly used loss

function in GANs that is based on the maximum margin
principle. Hinge loss has been shown to be effective in
stabilizing GAN training and producing high-quality samples
[13].

The mathematical notation for hinge loss is as follows [14]:

𝐿(𝑦, 𝑓(𝑥)) = 𝑚𝑎𝑥(0, 1 − 𝑦𝑓(𝑥)), (5)

where 𝑦 is the true label of a sample, and 𝑓(𝑥) is the predicted
score for that sample, 𝑚𝑎𝑥 is the maximum function, which
returns the larger of its two arguments.

In the context of GANs, the hinge loss is used to train the
discriminator, where 𝑦 is set to 1 for real samples and -1 for
fake samples, and 𝑓(𝑥) is the discriminator's output for that
sample.

The hinge loss penalizes the model when the predicted score
for the true label is less than 1. If the score is greater than or
equal to 1, the loss is 0.

Table 5. Hinge Loss Pros and Cons

Pros Cons
Robust to outliers.
Hinge loss handles outliers well,
making it suitable for GANs where
generated samples may not match
real samples perfectly.

Sensitivity to hyperparameters.
Hinge loss's sensitivity to
hyperparameters, like the margin
value, can impact results if chosen
incorrectly.

Encourages diversity. Difficulty in convergence.

Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

VOLUME 22(3), 2023 295

Hinge loss promotes diversity in
generated samples by penalizing
their similarity, preventing
repetition in GAN output.

Converging hinge loss can be
challenging, particularly with
inadequate network design or
complex datasets. This can lead to
unstable training and subpar
generated samples.

Works well with large datasets.
Hinge loss works well with large
datasets because it is
computationally efficient and can
handle a large number of samples
without overfitting.

Limited applicability.
Hinge loss might not be appropriate
for all GANs and datasets. It may
struggle with datasets of limited
samples or with GANs employing
diverse architectures like
conditional GANs.

6. Maximum Mean Discrepancy (MMD). MMD is a

distance-based loss function that measures the difference
between the distribution of real and synthetic data. MMD has
been shown to be effective in stabilizing GAN training and
producing high-quality samples [15].

In GANs, the generator is trained to minimize the MMD
distance between the generated and real data distributions,
which encourages the generated data to match the real data
distribution.

Table 6. MMD Pros and Cons

Pros Cons
Improved stability.
MMD improves GAN training by
promoting similarity between
generated and real samples,
preventing mode collapse and other
issues.

Limited effectiveness.
Although MMD enhances GAN
training stability, it may not capture
the complete complexity of the data
distribution, potentially limiting
sample quality from the generator.

Flexibility.
MMD is a versatile distance
measure for distributions, adaptable
to various data and applications
through different kernel functions.

Hyperparameter tuning.
MMD requires careful
hyperparameter selection (e.g.,
kernel function, bandwidth), which
can be challenging and greatly
affect GAN performance.

Efficient computation.
MMD can be computed efficiently
using a simple and fast algorithm.
This makes it a practical choice for
use in GANs and other machine
learning applications.

Computational cost.
Although MMD is computationally
efficient, it may struggle with large
datasets or complex models,
limiting its practicality for certain
applications.

It is important to note that there is no universally optimal

choice of loss function for a given GAN architecture. The
selection of a suitable loss function for a specific task must take
into consideration the unique characteristics of the problem at
hand. As a result, loss functions must be chosen on a case-by-
case basis.

The suitability of a loss function is dependent on the
specific requirements of the task, the dataset, and the
architecture. Therefore, an adaptive approach to the selection
of a loss function is necessary to achieve optimal performance.
This often requires the use of experimental techniques to
explore the performance of different loss functions under
different conditions.

B. ACTIVATION FUNCTIONS
Activation functions play a critical role in GANs. They are used
to introduce non-linearity into the generator and discriminator
networks, which allows the model to learn complex
relationships between the input and output data. The choice of
activation function can have a significant impact on the
performance of the GAN model, its accuracy, and its stability.

1. Sigmoid. Sigmoid is an activation function that maps the
input to the range [0,1]. It is defined as:

Sigmoid (𝑥) = 𝜎(𝑥) =
 ()

, (6)

where 𝑥 is an input value, 𝜎 is a standard deviation, and 𝑒𝑥𝑝 is
an exponential function; Fig. 2.

Figure 2. Logistic sigmoid activation function.

Sigmoid is commonly used as the activation function for the

output layer of the generator in GANs to ensure that the
generated samples are within the desired range [16, 17].

2. ReLU (Rectified Linear Unit). ReLU is one of the most
widely used activation functions in deep learning, including
GANs [16]. It is a non-linear activation function and can be
expressed using the following notation:

𝑓(𝑥) = (𝑥) = 𝑚𝑎𝑥(0, 𝑥), (7)

where 𝑥 is the neuron input value, 𝑚𝑎𝑥 is the output and
denotes the maximum magnitude between zero and the input
value; Fig. 3.

Figure 3. Rectified linear unit or ReLU – non-linear activation
function.

ReLU is computationally efficient and allows for faster
convergence during training.

3. LeakyReLU. LeakyReLU is a variant of ReLU that solves
the problem of "dying ReLU," where the gradient of ReLU
becomes zero for negative inputs, causing the corresponding
neurons to stop learning [16, 17]. LeakyReLU is defined as:

LReLU (𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝑚 ∗ 𝑚𝑖𝑛(0, 𝑥), (8)

where 𝑥 is the neuron input value, 𝑚𝑎𝑥 denotes the maximum
magnitude between zero and the input value, 𝑚 represents a
negative slope, 𝑚𝑖𝑛 represents the minimum value between
zero and 𝑥; Fig. 4.

 Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

296 VOLUME 22(3), 2023

Figure 4. Leaky rectified linear unit or LReLU – linear variant
of ReLU.

LeakyReLU allows for some negative values to pass
through the activation function, providing a more robust
gradient flow during training [16].

4. Tanh (Hyperbolic Tangent). Tanh is an activation
function that maps the input to the range [-1,1]. It is defined as:

Tanh (𝑥) = tanh (𝑥) =
 () ()

 () ()
, (9)

where tanh is a hyperbolic tangent function, 𝑥 is the output of
the generator, and exp is an exponential function.

Figure 5. Hyperbolic tangent or tanh – hyperbolic activation
function.

The hyperbolic tangent function (tanh) is helpful in GANs

because it generates values between -1 and 1, compatible with
the same range as normalized real data. With its smooth
gradient, it assists in stabilizing the training process and
mitigates the issue of exploding gradients, though it can still
suffer from the vanishing gradient problem. Additionally, tanh
can help the generator network produce a wider range of output
values, making it more diverse and realistic [16, 17].

5. Softmax. Softmax is an activation function used for multi-
class classification problems in GANs [16]. It maps the output
of the model to a probability distribution over multiple classes.
Softmax is defined as:

Softmax (𝑥) =
()

∑  
, (10)

where 𝑥 is the output of the i-th neuron in the output layer and
the sum is taken over all neurons in the output layer.

Activation functions reviewed above are a critical
component of GANs that help to introduce non-linearity into
the models. There is no single “best” activation function, as
each function has its own set of strengths and weaknesses.
Sigmoid and Tanh functions are commonly used in GANs for

their ability to normalize output values between -1 and 1, but
they suffer from the vanishing gradient problem. ReLU and
LeakyReLU are popular due to their simplicity and ability to
address the vanishing gradient problem, but they are not
suitable for all applications. Softmax is used in multi-class
classification tasks to generate probability distributions, but it
is not appropriate for regression tasks. The choice of activation
function depends on the specific requirements of the task and
an understanding of the characteristics and trade-offs of each
function.

C. BATCH NORMALIZATION
The process of normalizing inputs to every layer is referred

to as batch normalization and is widely utilized in deep neural
networks. This technique enhances the network's robustness to
varying input distributions [18]. In the domain of GANs, batch
normalization serves as a valuable tool to ensure the stability
of both generator and discriminator network training [19].

In a GAN, the generator network leverages a random noise
vector to generate synthetic images or samples, while the
discriminator network takes an image as input and endeavors
to differentiate between genuine and counterfeit images. The
training of these networks occurs iteratively, wherein the
generator strives to fabricate images that can deceive the
discriminator, and the discriminator aims to accurately classify
both genuine and fake images.

Batch normalization involves normalizing the inputs to each
layer of the network based on the statistics of the mini-batch of
data being processed. Specifically, batch normalization
involves subtracting the mean and dividing by the standard
deviation of the input values for each layer. This has the effect
of centering and scaling the data, making it easier for the
network to learn [18, 19, 20].

In GANs, batch normalization is typically applied to the
inputs of the discriminator network, as this can help to reduce
the problem of mode collapse. By normalizing the inputs to the
discriminator, the network is less likely to overfit specific
image features and can better distinguish between real and fake
images [21].

Batch normalization can also be applied to the generator
network, but this is less common as it can make the network
more sensitive to small changes in the input noise vector, which
can lead to instability in the training process. However, some
variations of GANs, such as conditional GANs, may benefit
from batch normalization in the generator network [12].

D. WEIGHT CLIPPING AND GRADIENT PENALTY
Weight clipping and gradient penalty are two additional

techniques commonly used in the training of GANs to improve
stability and encourage the generation of higher-quality images
[22].

Weight clipping refers to a strategy employed to prevent the
weights of the discriminator network from growing excessively
large during the training process. This technique involves
establishing a predetermined threshold value and, after each
training iteration, capping the discriminator's weights to ensure
they remain under this threshold. Through restricting the
weights to a predetermined range, weight clipping can mitigate
the issue of mode collapse, and curtail the discriminator from
becoming excessively “confident” in its predictions [22].

However, weight clipping has some drawbacks. First, it can
result in the loss of important discriminative information,

Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

VOLUME 22(3), 2023 297

particularly when the weights are clipped too aggressively.
Additionally, weight clipping can lead to instability in the
training process, particularly when used in combination with
other techniques like batch normalization [22].

While weight clipping can be an effective technique for
preventing discriminator weights from becoming too large
during training, it has a few potential drawbacks [22, 23].

First, weight clipping can lead to gradient vanishing or
exploding, particularly when the threshold is set too low or too
high, respectively. This can hinder the learning process and
negatively impact the performance of the model.

Second, weight clipping can result in a non-smooth
optimization objective, which can make it more difficult to find
the global optimum during training.

Third, weight clipping can be difficult to set optimally, and
the optimal value may vary depending on the specific dataset
and model architecture.

Lastly, weight clipping can reduce the expressive power of
the model and limit its ability to capture complex patterns in
the data.

By penalizing the discriminator for producing gradients that
deviate from the desired values, gradient penalty can help to
reduce the problem of mode collapse and improve the overall
quality of generated images. Additionally, gradient penalty has
been shown to be more effective than weight clipping in
improving the stability and convergence of the GAN training
process [23].

However, gradient penalty has some limitations as well.
First, it can be computationally expensive to calculate,
particularly for large GAN models with many layers.
Additionally, the effectiveness of gradient penalty depends on
the specific choice of penalty function and hyperparameters
used and may require careful tuning to achieve optimal results.
Gradient penalty can lead to vanishing or exploding gradients,
particularly when the penalty term is set too high. This can
hinder the learning process and negatively impact the
performance of the model [23].

One-Lipschitz (1-L) continuity is a property of functions
that measures how much their output can change when the
input changes by a small amount. In the context of GANs, 1-L
continuity is often used to ensure the stability and convergence
of the training process by preventing the discriminator function
from becoming too sensitive to small changes in the input data.
By enforcing this constraint, GANs can produce more stable
and higher-quality generated samples [11, 23].

If the GAN discriminator is too sensitive to small changes
in the input data, it may assign very different scores to two
similar images, even if they are both real. This can lead to
instability and poor performance in GAN.

To address this issue, some GANs use gradient penalty,
which enforces 1-L continuity by adding a regularization term
to the discriminator loss function. This term penalizes the
discriminator if its gradients with respect to the input data
exceed a certain threshold, which helps to ensure that the
discriminator is not too sensitive to small changes in the input
[11, 23].

Overall, enforcing 1-L continuity is an important
consideration when designing and training GANs, as it can help
to prevent instability and improve the quality of generated data.

In summary, weight clipping and gradient penalty are two
additional techniques commonly used in the training of GANs
to improve stability and encourage the generation of higher
quality images. While weight clipping can help prevent the

discriminator from becoming too “confident” in its predictions,
gradient penalty can encourage the discriminator to produce
more realistic gradients and improve the overall quality of
generated images. However, both techniques have limitations
and must be carefully tuned to achieve optimal results [22, 23].

E. STABILITY PROBLEM
Stability is a major challenge in training GANs and refers to

the difficulty of maintaining a balance between the generator
and discriminator networks during training. Instability can
manifest in a number of ways, such as oscillating or exploding
loss functions, vanishing gradients, or mode collapse [1, 19,
22].

There are several techniques that can be used to address
stability issues in GANs, including the ones already mentioned
such as batch normalization, weight clipping, and gradient
penalty [24]. In addition to these, some other commonly used
techniques to improve stability in GANs are:

1. One-sided Label Smoothing. This technique involves
smoothing the labels for the real images to be less than 1 and
the labels for the fake images to be greater than 0. By doing so,
the discriminator is encouraged to be less certain in its
predictions, which can help to prevent it from becoming too
dominant during training [19, 25].

2. Feature Matching. Feature matching involves modifying
the generator's loss function to encourage the generated images
to match the intermediate features extracted by the
discriminator, rather than just the final output. By doing so, the
generator is encouraged to produce more diverse images, and
the discriminator is less likely to overfit to specific image
features [19].

3. Spectral Normalization. Spectral normalization involves
normalizing the weights of the discriminator based on the
spectral norm of each weight matrix. This can help to reduce
the Lipschitz constant of the discriminator and improve the
stability of the training process [26].

3. Diversity Regularization. Diversity regularization
involves modifying the generator's loss function to encourage
the production of diverse images, by penalizing the generator
for generating similar images. This can help to reduce the
problem of mode collapse and improve the overall quality of
generated images [27].

4. Dropout. Dropout is a regularization technique used in
the generator network of GANs to prevent overfitting and
improve generalization performance. It works by randomly
deactivating a proportion of the neurons during each training
iteration, forcing the generator to rely on different subsets of
neurons to generate samples. Dropout has been shown to be
effective in preventing overfitting and improving the
generalization performance of GANs, but its application
requires careful tuning of the dropout rate and selection of the
layers to apply dropout to [42].

These techniques are not mutually exclusive and can be
combined depending on the specific needs of a GAN model.
Ultimately, achieving stability in GANs requires careful tuning
of the model architecture, hyperparameters, and training
procedure, as well as the use of appropriate techniques to
address stability issues.

F. TRANSPOSED CONVOLUTION
Transposed convolution, also known as deconvolution or

fractionally-strided convolution, is a key operation in many

 Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

298 VOLUME 22(3), 2023

GANs. It is used in the generator network to upsample the low-
resolution feature maps produced by the initial layers of the
network [28].

The transposed convolution operation is essentially the
reverse of a regular convolution operation. In a regular
convolution operation, a kernel is applied to the input image to
produce a set of output feature maps. In a transposed
convolution operation, a kernel is applied to the output feature
maps to produce a set of upsampled feature maps [28].

Transposed convolution is typically used in conjunction
with a stride parameter to perform upsampling. The stride
parameter determines the spacing between the output pixels,
and by setting it to a value greater than 1, the operation
effectively performs upsampling. For instance, a stride of 2 will
double the resolution of the feature maps [28].

One important consideration when using transposed
convolution is the choice of padding. In regular convolution,
the output size is smaller than the input size due to the
convolution operation "removing" some pixels around the
edges. In transposed convolution, the output size can be larger
than the input size if appropriate padding is applied. The choice
of padding can affect the quality of the generated images and is
an important hyperparameter to consider when designing a
GAN-based model [28].

Transposed convolution allows the generator to produce
high-resolution images from low-resolution inputs. By using a
series of transposed convolution layers to gradually increase
the resolution of the feature maps, the generator can produce
images that are much larger and more complex than the initial
input noise vector [29].

Although transposed convolution is a powerful technique, it
is not without its challenges. One issue is that it can generate
artifacts and checkerboard patterns in the resulting images.
Another potential challenge is that training can be difficult,
especially when using large stride values or deep neural
networks. This is due to the operation's ability to amplify small
errors in the input, which can result in unstable training.
However, these challenges can be addressed by carefully
tuning the transposed convolution parameters, such as
adjusting the kernel sizes and strides, implementing skip
connections, or using alternative upsampling techniques [29].

To conclude, transposed convolution is a valuable asset in
the GAN toolkit as it enables the creation of high-quality, high-
resolution images from low-dimensional input vectors.

G. CURSE OF DIMENSIONALITY
The term curse of dimensionality refers to the difficulties

that arise when handling high-dimensional data. In the context
of GANs, this can present significant challenges for both the
generator and discriminator networks [1, 30].

One of the main challenges posed by the curse of
dimensionality is the sparsity of high-dimensional data. As the
dimensionality of the input data increases, the amount of data
required to fully cover the input space increases exponentially.
This can make it difficult to train GANs on high-dimensional
data, as the amount of training data required to achieve good
performance can quickly become prohibitively large [1].

Another challenge posed by the curse of dimensionality is
the increased complexity of the generator and discriminator
networks. As the dimensionality of the input data increases, the
number of parameters in the generator and discriminator
networks also increases. This can make it more difficult to train
the networks, as the optimization problem becomes more

complex, and the risk of overfitting increases [1].
Several approaches have been proposed to tackle the curse

of dimensionality in GANs, such as dimensionality reduction,
regularization, and transfer learning. Dimensionality reduction
can be leveraged to decrease the input data's dimensionality,
thus facilitating GAN training. Regularization methods can be
utilized to prevent overfitting and improve the networks'
generalization capacity. Transfer learning can be applied to
benefit from pre-trained models on related tasks, which can
reduce the amount of training data required for optimal
performance [16, 30].

III. EVALUATION OF GAN PERFORMANCE
Due to the absence of intrinsic evaluation metrics, assessing the
performance of GANs can be challenging. Their performance
is often evaluated using metrics such as Fréchet inception
distance (FID) and Inception score, which measure the quality
and diversity of the generated images. In addition to FID and
Inception score, precision and recall, as well as Perceptual Path
Length (PPL), can be employed to comprehensively evaluate
the performance of GANs. Let’s review these metrics in greater
detail.

1. Density estimation. Density estimation is a fundamental
aspect of GANs, as the generator network learns to model the
underlying distribution of the input data. The quality of the
generated samples is directly related to the accuracy of the
underlying distribution learned by the generator network. As a
result, density estimation plays a crucial role in both training
and evaluating GANs and is closely related to the performance
evaluation metrics used for GAN-generated images [1, 8].

2. Fréchet inception distance (FID). FID is a commonly
used metric for evaluating the quality of GAN-generated
images. It measures the distance between the feature
representations of real and generated images, as computed by a
pre-trained Inception network. Lower FID scores indicate
better quality generated images [19, 31].

3. Inception score. The Inception score is another
commonly used metric for evaluating the quality of GAN-
generated images. It measures the diversity and quality of
generated images by computing the entropy of the predicted
class labels for each image, and then taking the exponent of the
mean entropy [19, 32].

4. Precision and recall. Precision and recall are metrics
commonly used in classification tasks, but they can also be
used to evaluate the performance of GANs. Precision measures
the proportion of generated images that are classified as real,
while recall measures the proportion of real images that are
classified as such [33].

5. Perceptual Path Length (PPL). PPL is a metric for
evaluating the diversity of GAN-generated images. It measures
the average distance in feature space between pairs of images
that are near each other in latent space. Lower PPL scores
indicate greater diversity and higher quality generated images
[34, 35].

Performance evaluation is an essential aspect of any
machine learning model, and GANs are no exception. In the
context of GANs, the evaluation is particularly challenging due
to the absence of a clear objective function and the subjective
nature of the generated samples' quality. The reviewed
evaluation metrics are designed to provide a quantitative
measure of GANs' performance and guide the development and
improvement of GAN architectures. As this type of neural
network continues to advance and finds new applications, the

Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

VOLUME 22(3), 2023 299

development of more effective and robust performance
evaluation techniques will remain an active area of research.

IV. ADDITIONAL GAN TECHNIQUES
There are additional methods that can improve the performance
of GAN-based models. Let's review some of them.

A. ONE-SIDED LABEL SMOOTHING
One-sided label smoothing is a technique used to improve the
generalization performance of GANs. It involves modifying the
labels used for the discriminator network during training, by
replacing the binary labels of 0 and 1 with smoothed labels of 0
and α, where α is a value between 0 and 1.

The purpose of label smoothing is to prevent the
discriminator from becoming too “confident” in its predictions,
which can lead to overfitting and poor generalization
performance. By smoothing the labels, the discriminator is
encouraged to be less certain in its predictions, which can help to
improve the overall performance of the GAN model.

One-sided label smoothing is called "one-sided" because
only the positive label (i.e., the label for real data) is smoothed,
while the negative label (i.e., the label for generated data) is left
unchanged. This is because smoothing the negative label can
lead to unstable training and worse performance [19, 26].

B. MINI-BATCH DISCRIMINATION
Mini-batch discrimination is a GAN technique that enhances

the diversity and quality of generated images. It integrates an
extra layer to the discriminator network, which calculates a
distance measure between the features of generated images and
those of other images within the same mini-batch [19].

The purpose of mini-batch discrimination is to encourage the
generator network to produce more diverse images by penalizing
it for generating images that are too similar to each other. This
can help to prevent mode collapse.

The distance metric used in mini-batch discrimination can
take many forms, but a commonly used approach is to compute
the L1 or L2 distance between the features of the generated
images and the features of other images in the same mini-batch.
The resulting distance values are then concatenated with the
features of the generated images and passed through the
discriminator network.

L1 and L2 distances are two types of distance metrics used in
machine learning to measure the difference or similarity between
two vectors. The L1 distance, also known as the Manhattan
distance, is the sum of the absolute differences between the
corresponding elements of two vectors. The L2 distance, also
known as Euclidean distance, is the square root of the sum of the
squared differences between the corresponding elements of two
vectors.

Overall, mini-batch discrimination is a simple and effective
technique for improving the diversity and quality of GAN-
generated images, by encouraging the generator network to
produce more diverse images and preventing mode collapse. It is
particularly useful for generating high-resolution images or for
tasks where the target distribution has many modes [19].

C. SAMPLING AND TRUNCATION TRICK
The sampling and truncation trick is a technique used to improve
the diversity and quality of GAN-generated images. It involves

randomly sampling the latent space of the generator network and
truncating the samples to a certain percentile of their distribution.
This can help to encourage the generation of diverse and high-
quality images [36].

V. ALGORITHMS FOR IMPLEMENTING OPTIMIZATION
STRATEGY
In order to enhance the performance of GAN models,
optimization algorithms based on gradient descent have been
explored, such as SGD, RMSProp, AdaGrad, Momentum,
Adadelta, Adagrad, and ADAM [37].

1. Stochastic Gradient Descent (SGD) is a simple and widely-
used optimization algorithm for neural networks, which updates
the model parameters by computing the gradient of the loss
function with respect to the parameters and adjusting them in the
opposite direction of the gradient.

2. RMSProp is a gradient-based optimization algorithm that
adapts the learning rate for each parameter based on the moving
average of squared gradients, which reduces the impact of noisy
gradients.

3. AdaGrad adapts the learning rate for each parameter based
on the sum of the squares of past gradients, which gives larger
updates for infrequent parameters and smaller updates for
frequent ones.

4. Momentum uses a moving average of past gradients to
accelerate SGD, which helps to avoid local minima and converge
faster.

5. Adadelta is an extension of the AdaGrad algorithm that
adapts the learning rate based on the moving average of gradients
and updates, which further reduces the impact of noisy gradients.

6. ADAM adapts the learning rate for each parameter based on
the first and second moments of the gradients, which results in
more robust convergence and improved performance compared
to other optimization algorithms.

Among these algorithms, ADAM has been shown to achieve
superior performance compared to RMSProp, regardless of
hyper-parameter settings, as demonstrated by experimental
evaluation with logistic regression, multi-layer neural networks,
and convolutional neural networks [37].

The optimization of GANs still remains an active research
area, with ongoing efforts directed towards developing
mathematical foundations and improving software and hardware
implementations.

VI. OPTIMIZATION STRATEGY IN GAN DESIGN:
EXPERIMENTAL RESULTS
In order to evaluate the effectiveness of some of the reviewed
methods and approaches for optimizing GAN performance, we
conducted experimental tests on two similar GAN models: the
standard GAN and DCGAN with a BCE loss function. We
trained the GAN model on the MNIST dataset, and the DCGAN
model on the Sokoto Coventry Fingerprint Dataset with similar
training and testing setups. We performed the training in a web-
based Kaggle environment using a GPU as the main processing
unit. The models were trained for a fixed number of
epochs [6, 7].

We used Keras and PyTorch as the two main libraries, with
Keras for GAN and PyTorch for DCGAN.

We used ADAM as an optimization algorithm and compared
its performance to different benchmarks and the performance

 Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

300 VOLUME 22(3), 2023

indicators of other optimizers such as RMSProp and SGD. We
analyzed their ability to optimize the standard GAN and
DCGAN models. Our experimental results showed that Adam
outperformed the other optimization algorithms in terms of
convergence speed and final performance for both models.

For the standard GAN, we used Adam for both generator and
discriminator models with a learning rate of 0.0002 and a beta_1
parameter of 0.5.

For DCGAN, we also applied Adam for both networks, with
the same beta1 parameter but set two different learning rates for
the generator and discriminator – 0.0001 and 0.0002,
respectively.

Next, we tested the effectiveness of dropout as a regularization
technique for improving GAN model performance and batch
normalization for DCGAN.

Both techniques appeared to be effective and simple
approaches for improving the stability and convergence speed of
the standard GAN and DCGAN models.

We trained the generator and discriminator alternately, with
the discriminator trained first and then the generator [6, 7].

Below are two samples of synthetic images generated by our
GAN and DCGAN models (Fig. 6 and Fig. 7).

Figure 6. GAN-generated samples (trained on MNIST).

Figure 7. DCGAN-generated samples (trained on
SOCOFing).

The challenges we faced included:
 High computational demands of the models.
 Overall low-speed performance.
 High rates of mode collapse.
 Low quality of the generated data in terms of accuracy.

Moving forward, we plan to practically implement all the
design methods listed in the article into our newly developed
GAN-based anomaly detection system, which also incorporates
a fuzzy logic component. With the optimal configuration of
hyperparameters, the use of appropriate optimization techniques,
and the correct choice of evaluation metrics, authors expect to
achieve high-performance results.

Overall, our experiments demonstrate the effectiveness of
these techniques in improving GAN performance and highlight
the importance of selecting appropriate optimization approaches
for specific GAN models.

VII. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS
The article provides a comprehensive analysis of the technical

peculiarities and challenges involved in designing and
optimizing Generative Adversarial Networks to generate
realistic, qualitative synthetic data of various range of types.

Through a range of topics, including loss functions,
activation functions, batch normalization, weight clipping,
gradient penalty, stability problems, performance evaluation,
and others, various techniques used to address these challenges
are reviewed, highlighting recent advancements in the field.

Moving forward, there is a need for further research into the
development of more efficient and effective GAN optimization
techniques, as well as their practical applications in various
fields such as medicine, cybersecurity, computer vision,
robotics, graphics, data augmentation, and intelligent systems
[38-41].

The conducted analysis aims to provide a better
understanding of how GAN models can be improved in terms
of performance and computational efficiency. Despite the huge
spike in popularity of large language models like GPT-4 and
diffusion models like Stable Diffusion, GANs still possess the
potential to significantly contribute to scientific research,
technology, and business, and thus should be thoroughly
researched. Also, the provided analysis gives a better intuition
on that GANs should be designed and fine-tuned carefully
taking into account a particular area of application. Hence, the
analyzed materials have practical value for researchers in the
field.

The continued improvement of GAN architectural
optimization research is an essential area of focus for
researchers and domain experts. By addressing the technical
challenges outlined in this article and building upon recent
advancements in the field, we can gain a more comprehensive
understanding of GANs and harness their potential to create
new, innovative solutions to complex problems.

References

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, J. Bengio, “Generative adversarial networks,”
Proceedings of the International Conference on Neural Information
Processing Systems (NIPS), 2014, pp. 2672–2680.

[2] N. Aldausari, A. Sowmya, N. Marcus, and G. Mohammadi, Video
Generative Adversarial Networks: A Review, 2022.
https://doi.org/10.1145/3487891.

[3] O. S. Striuk, Y. P. Kondratenko, “Generative adversarial neural networks
and deep learning: Successful cases and advanced approaches,”
International Journal of Computing, vol. 20, issue 3, pp. 339-349, 2021.
https://doi.org/10.47839/ijc.20.3.2278.

[4] F. Di Mattia et al., A Survey on GANs for Anomaly Detection, 2021,
[Online]. Available at: https://arxiv.org/abs/1906.11632

[5] O. S. Striuk, Y. P. Kondratenko, “Generative adversarial networks in
cybersecurity: Analysis and response,” in: Y. Kondratenko, V.
Kreinovich, W. Pedrycz, A. Chilrii, A. M. Gil-Lafuente (Eds.), Artificial
Intelligence in Control and Decision-making Systems: Dedicated to Prof.
Janusz Kacprzyk. Studies in Computational Intelligence, vol. 1087,
Springer, Cham, 2023, pp. 373-388. https://doi.org/10.1007/978-3-031-
25759-9_18.

[6] O. Striuk and Y. Kondratenko, “Adaptive deep convolutional GAN for
fingerprint sample synthesis,” Proceedings of the 2021 IEEE 4th
International Conference on Advanced Information and Communication
Technologies (AICT), Lviv, Ukraine, September 21-25, 2021, pp. 193-
196. https://doi.org/10.1109/AICT52120.2021.9628978.

[7] O. Striuk, Y. Kondratenko, I. Sidenko, A. Vorobyova, “Generative
adversarial neural network for creating photorealistic images,”
Proceedings of 2020 IEEE 2nd International Conference on Advanced
Trends in Information Theory, Kyiv, Ukraine, November 27, 2020, pp.
368-371. https://doi.org/10.1109/ATIT50783.2020.9349326.

[8] M. Arjovsky, L. Bottou, Towards Principled Methods for Training
Generative Adversarial Networks, 2017, [Online]. Available at:
https://arxiv.org/abs/1701.04862.

Oleksandr Striuk et al. / International Journal of Computing, 22(3) 2023, 292-301

VOLUME 22(3), 2023 301

[9] R. Ayari, Generative Adversarial Networks, 2020, [Online]. Available at:
https://bit.ly/3Uk4GBw.

[10] A. Borji, Pros and Cons of GAN Evaluation Measures, 2018, [Online].
Available at: https://arxiv.org/abs/1802.03446.

[11] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN, 2017, [Online].
Available at: https://arxiv.org/abs/1701.07875.

[12] X. Mao et al., Least Squares Generative Adversarial Networks, 2016,
[Online]. Available at: https://arxiv.org/abs/1611.04076.

[13] J. H. Lim, J. C. Ye, Geometric GAN, 2017, [Online]. Available at:
https://arxiv.org/abs/1705.02894.

[14] C. Cortes, V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, issue 3, pp. 273-297, 1995. https://doi.org/10.1007/BF00994018.

[15] C.-L. Li et al., MMD GAN: Towards Deeper Understanding of Moment
Matching Network, 2017, [Online]. Available at:
https://arxiv.org/abs/1705.08584.

[16] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press,
Cambridge, Massachusetts, 2016, 66 p., 178 p., 187 p., 189p.

[17] M. P. Deisenroth, A. A. Faisal, C. S. Ong, Mathematics for Machine
Learning, 1st ed., Cambridge University Press, Cambridge, 2020, 160 p.,
213 p., 315 p. https://doi.org/10.1017/9781108679930.

[18] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, 2015, [Online]. Available
at: https://arxiv.org/abs/1502.03167.

[19] T. Salimans et al., Improved Techniques for Training GANs, 2016,
[Online]. Available at: https://bit.ly/3L8qjBM.

[20] A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks, 2016,
[Online]. Available at: https://arxiv.org/abs/1511.06434,

[21] S. Xiang, H. Li, On the Effects of Batch and Weight Normalization in
Generative Adversarial Networks, 2017, [Online]. Available at:
https://arxiv.org/abs/1704.03971.

[22] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN, 2017, [Online].
Available at: https://arxiv.org/abs/1701.07875.

[23] I. Gulrajani et al., Improved Training of Wasserstein GANs, 2017,
[Online]. Available at: https://arxiv.org/abs/1704.00028.

[24] K. Roth et al., Stabilizing Training of Generative Adversarial Networks
through Regularization, 2017, [Online]. Available at:
https://arxiv.org/abs/1705.09367.

[25] J. Hui, GAN – Ways to improve GAN performance, 2018, [Online].
Available at: https://bit.ly/3A8d11Z.

[26] T. Miyato et al., Spectral Normalization for Generative Adversarial
Networks, 2018, [Online]. Available at: https://arxiv.org/abs/1802.05957.

[27] B. O. Ayinde, K. Nishihama, J. M. Zurada, Diversity Regularized
Adversarial Learning, 2019, [Online]. Available at:
https://arxiv.org/abs/1901.10824. https://doi.org/10.1007/978-3-030-
19823-7_24.

[28] V. Dumoulin, F. Visin, A Guide to Convolution Arithmetic for Deep
Learning, 2018, [Online]. Available at: https://arxiv.org/abs/1603.07285.

[29] J. Brownlee, How to Use the UpSampling2D and Conv2DTranspose
Layers in Keras, 2019, [Online]. Available at: https://bit.ly/3oq94TA.

[30] J. Brownlee, A Gentle Introduction to Transfer Learning for Deep
Learning, 2017, [Online]. Available at: https://bit.ly/3GTmdeC.

[31] M. Heusel et al., GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium, 2018, [Online]. Available at:
https://arxiv.org/abs/1706.08500.

[32] S. Barratt, R. Sharma, A Note on the Inception Score, 2018, [Online].
Available at: https://arxiv.org/abs/1801.01973.

[33] M. S. M. Sajjadi, Assessing Generative Models via Precision and Recall,
2018, [Online]. Available at: https://arxiv.org/abs/1806.00035.

[34] T. Karras, S. Laine and T. Aila, “A style-based generator architecture for
generative adversarial networks,” Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, June 15-20, 2019, pp. 4396-4405.
https://doi.org/10.1109/CVPR.2019.00453.

[35] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen and T. Aila,
“Analyzing and improving the image quality of StyleGAN,” Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, June 13-19, 2020, pp. 8107-8116.
https://doi.org/10.1109/CVPR42600.2020.00813.

[36] J. Brownlee, A Gentle Introduction to BigGAN the Big Generative
Adversarial Network, 2019, [Online]. Available at:
https://bit.ly/3om09CM.

[37] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, 2014,
[Online]. Available at: https://arxiv.org/abs/1412.6980.

[38] Y. Kondratenko, I. Atamanyuk, I. Sidenko, G. Kondratenko, S.
Sichevskyi, “Machine learning techniques for increasing efficiency of the
robot’s sensor and control information processing,” Sensors, vol. 22,
issue 3, 1062, 2022. https://doi.org/10.3390/s22031062.

[39] M. Derkach, I. Skarga-Bandurova, D. Matiuk and N. Zagorodna,
“Autonomous quadrotor flight stabilisation based on a complementary
filter and a PID controller,” Proceedings of the 2022 12th International
Conference on Dependable Systems, Services and Technologies
(DESSERT), Athens, Greece, December 09-11, 2022, pp. 1-7.
https://doi.org/10.1109/DESSERT58054.2022.10018623.

[40] A. Shevchenko, M. Vakulenko, and M. Klymenko, “The Ukrainian AI
strategy: Premises and outlooks,” Proceedings of the 12th International
Conference on Advanced Computer Information Technologies (ACIT),
Ruzomberok, Slovakia, September 26-28, 2022, pp. 511-515.
https://doi.org/10.1109/ACIT54803.2022.9913094.

[41] V. N. Opanasenko, S. L. Kryvyi, “Synthesis of neural-like networks on
the basis of conversion of cyclic Hamming codes,” Cybernetics and
Systems Analysis, vol. 53, issue 4, pp. 627–635, 2017.
https://doi.org/10.1007/s10559-017-9965-z.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

OLEKSANDR STRIUK, Ph.D. student and
researcher at Petro Mohyla Black Sea
National University (PMBSNU). Master of
Science in System Analysis. Research
interests include AI, AGI, ML, DL, GANs.

YURIY KONDRATENKO, Doctor of
Science, Professor, Honour Inventor of
Ukraine (2008), Corr. Academician of
Royal Academy of Doctors (Barcelona,
Spain), Leading Researcher at the
Institute of Artificial Intelligence
Problems (IAIP) of MES and NAS of
Ukraine, Head of the Department of
Intelligent Information Systems at Petro
Mohyla Black Sea National University

(PMBSNU), Ukraine. He has received (a) the Ph.D. (1983) and Dr.Sc.
(1994) in Elements and Devices of Computer and Control Systems
from Odessa National Polytechnic University, (b) several
international grants and scholarships for conducting research at
Institute of Automation of Chongqing University, P.R.China (1988-
1989), Ruhr-University Bochum, Germany (2000, 2010), Nazareth
College and Cleveland State University, USA (2003), (c) Cleveland
State University, USA (2015/2016, Fulbright Program). Research
interests include robotics, automation, sensors and control
systems, intelligent decision support systems, fuzzy logic.

