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 ABSTRACT Manual cell counting using Hemocytometer is commonly used to quantify cells, as it is an 
inexpensive and versatile method. However, it is labour-intensive, tedious, and time-consuming. On the other hand, 
most automated cell counting methods are expensive and require experts to operate. Thus, the use of image analysis 
software allows one to access low-cost but robust automated cell counting. This study explores the advanced setting 
of image processing software to obtain routes with the highest counting accuracy. The results show the effectiveness 
of advanced settings in CellProfiler for counting cells from synthetic images. Two routes were found to give the 
highest performance, with average image and cell accuracies of 85% and 99.8%, respectively, and the highest F1 
score of 0.83. However, the two routes were unable to correctly determine the exact number of cells on the histology 
images, albeit giving a respectable cell accuracy of 79.6%. Further investigation has shown that CellProfiler is able to 
correctly identify the bulk of the cells within the histology images. Good image quality with high focus and less blur 
was identified as the key to successful image-based cell counting. To further enhance the accuracy, other modules can 
be included to further segment an object hence improving the number of objects identified. Future work can focus on 
evaluating the robustness of the routes by comparing them with other methods and validating with the manual cell 
counting method.  
 

 KEYWORDS Image Processing; Automated Cell Counting; CellProfiler; Synthetic Cell Images; Histology Cell 
Images. 
 

I. INTRODUCTION 
Cell counting is a method of quantifying cells to monitor cell 
proliferation and viability, enhance and optimise the cell 
culture condition, and prepare for cell-based assays [1, 2]. It is 
a standard laboratory procedure to investigate cell density and 
confluency and has been used for various purposes, including 
monitoring cell proliferation rates and seeding cells for 
downstream investigations [3]. Furthermore, it is also 
commonly employed in medical diagnostics and life sciences 
research [4].  

The commonly used method of counting cells is via 
manual counting using Hemocytometer. This method is very 
versatile and inexpensive as it only uses essential tools 
commonly available in the laboratory; however, it is very 
time-consuming, error-prone, and labour-intensive, especially 
when dealing with medium to high throughput cell counting 
[5, 6]. Additionally, human interpretation is required in 
manual cell counting, which makes the method heavily 
dependent on the operator’s expertise. This potentially leads 
to variability in results between different operators and even 
by the same operator but at different times, thereby reducing 
the reliability of the results. Subsequently, different automated 
methods of counting cells have been developed to surmount 

the existing challenges of manual cell counting. 
Many researchers have attempted several methods to 

automate the cell counting process, including using Hough 
Transformation [7], gray thresholding [8, 9], artificial neural 
networks via classification of cell shapes [10], automatic 
segmentation [11, 12], and mathematical morphology [13], 
[14]. While these methods are more time-efficient and able to 
reduce errors, they are not easy to follow, expensive and 
mostly depend on the operator’s capability to understand the 
algorithms behind the automated programs.  

Therefore, the aim of the present study is to explore a low-
cost method of automating the cell counting process by 
optimising the freely available image analyst software for 
image-based cell counting. It is envisaged that the proposed 
method of automated cell counting from the present work not 
only eliminates the current problems associated with manual 
cell counting but also makes automated cell counting 
conveniently available to be used by operators. At the initial 
stage, a preliminary screening of the freely available image 
processing software of ImageJ and Cell Profiler was 
conducted. Advanced settings of the selected software were 
then explored to construct image-processing methods for cell 
counting. At this stage, 64 routes were identified, and all were 
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tested for analysing 500 images. The performance of each 
route was then evaluated using the average cell and image 
accuracy to find the best routes for image analysis. The 
significance of the research is that users may use the proposed 
method to automate their cell counting tasks and utilise these 
best routes as the basis number of cells in an image. This has 
the effect of reducing the burden on the users, on what is 
otherwise a very troublesome and error-prone manual cell-
counting task. Finally, the attributes of the selected routes 
were tested on the blurry-image effect and actual microscopy 
images.  

II. METHODOLOGY 

A. IMAGE DATASET 
Two different image sets; BBBC005V1 from the Broad 
Bioimage Benchmark Collection [15] and breast cells from a 
cohort of Triple Negative Breast Cancer (TNBC) patients 
[16], were used in this paper. A summary of the dataset is 
given in Table 1, in Fig. 1(a) and Fig. 1(b) depicting sample 
images from the former and later datasets, respectively. The 
red box in Fig. 1(a) illustrates one possible situation whereby 
two cells are considered as one cell, due to clumping together 
of multiple cells, resulting in overall counting error. 
 

 
 

(a) (b) 

Figure 1. Sample images from (a) the BBCC005v1 dataset 
[15], and (b) breast cells from a cohort of Triple Negative 

Breast Cancer (TNBC) patients [16]. 

The BBBC005V1 simulated high-content screen image of 
Human Osteosarcoma Cells (U2OS) for a given cell count and 
was created by the SIMCEP simulating platform for 
fluorescent cell population images. They were created using a 
25% clustering probability and a Charge Coupled Device 
(CCD) noise variance of 0.0001. Each image has a 696 x 520 
pixels resolution. This dataset constitutes the Synthetic HSC 
image dataset and consists of 500 images. Each image in the 
dataset contains between 18 and 100 cells. 

The image set also includes focus blur, which has been 
created by applying a Gaussian filter, as well as 16 focus 
ranges (1-48). However, only five focus ranges of the 500 
images were used in this paper to give 2500 images. The 
image set is provided with labelled nuclei with a given cell 
count in binary 8-bit TIF images (black and white indicating 
background and foreground, respectively).  

The second image set includes annotated Hematoxylin & 
Eosin (H&E)-stained histology images at a magnification of 
40, containing breast cell samples from 11 TNBC cohort 
patients. Images in the set are in PNG format and have a 
resolution of 512 × 512. Furthermore, the image set is also 

provided with annotated nuclei, although without the cell 
counts. The annotated cell nuclei are normal epithelium and 
myoepithelial breast cells, invasive carcinomatous cells, 
fibroblasts, endothelial cells, adipocytes, macrophages, and 
inflammatory cells. To create a cell counting ground truth 
based on the annotated nuclei, the IdentifyPrimaryObjects of 
the CellProfiler software was employed. The image set 
contained 50 images, but only five were utilised in this paper. 

Table 1. Summary of image dataset used 

Dataset 
No. of 
images 

No. of cells 
in images 

Remarks 

Synthetic 
HSC 
images 

500 Between 18 
and 100 cells 

BBBC005V1 from the Broad 
Bioimage Benchmark 
Collection [15] 

2500 BBBC005V1 from the Broad 
Bioimage Benchmark 
Collection [15], with 5 focus 
ranges: F1, F14, F23, F35 
and F48  

Histology 
images 

5 Between 20 
and 103 cells 

breast cells from a cohort of 
Triple Negative Breast 
Cancer (TNBC) patients [16] 

B. PRELIMINARY ASSESSMENT OF IMAGE SOFTWARE 
Initially, two image processing software were considered: 
CellProfiler and ImageJ. Both CellProfiler [17] and ImageJ 
[18] software have been used to process several types of 
microscopy images, including brightfield, histology, 
fluorescence, differential interference contrast (DIC), and 
phase imaging. In this paper, they were explored and tested 
using the same image set: the Synthetic Hematopoietic Stem 
Cell (HSC) image dataset, to determine the suitability of 
software in automating the cell counting process. Particularly, 
the following selection criteria were considered: (i) the 
accuracy of the results using the software’s default setting, 
and (ii) ease of use of the software. After software selection, 
the selected software was then used for the counting of cells 
under different settings.  

C. IDENTIFYING AND COUNTING CELL NUCLEI USING 
THE CELLPROFILER SOFTWARE 
Assessments of the two pieces of software show that the 
CellProfiler software is more suitable software according to 
the selection criteria, and as such, it has been chosen as the 
platform to be used for automated cell counting. A 
CellProfiler pipeline has been developed, containing fully 
configurable modules that need to be performed sequentially 
to fulfil the counting task. The crucial module responsible for 
identifying and counting objects is the IdentifyPrimaryObjects 
module. Table 2 gives the list of modules used for the task 
and their functions, categorised according to their overall 
usage.   

Table 2. The descriptions of CellProfiler modules 

Category Module Function 

Im
ag

e 
A

cq
ui

si
ti

on
 

UnmixColors 

Create separated grayscale images from a 
colour image stained such as Histology. 
The modules sorted the images based on 
two or more stains in the background. 

ImageMath 
Performs simple mathematics 
calculations on image intensities. 

e S eg m en taGaussianFilter 
It helps to blur the images to eliminate 
noise. This module is tremendously 
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beneficial to images with noisy 
foreground signals. 

Smooth 
Using this module, one may blur or 
smooth an image to remove minor 
artefacts. 

Threshold 
Convert the grayscale images into binary 
using pre-selected threshold methods. 

MaskImage 

Masks an image to highlight the 
identified objects while hiding other areas 
of the image. This module helps in the 
pipeline’s downstream process. 

O
bj

ec
t 

Id
en

ti
fi

ca
tio

n 
an

d 
C

ou
nt

in
g 

IdentifyPrimary
Objects 

Recognize the biological objects of 
interest. This module is used in this 
project to recognize nuclei and count the 
number of identified nuclei in an image. 

D
at

a 
E

xp
or

t 

ExportToSpread
sheet 

It helps to collect the data from the 
preceding module and export it to usable 
files such as Excel. 

 
The choice of modules to use is partly dependent on the 

utilized image set. Two methods were created: 1) the 
Automated Cell-Counting method for the Synthetic HSC 
Image dataset, containing the IdentifyPrimaryObjects module, 
and 2) the Automated Cell-Counting method for the Histology 
Image dataset, containing other pre-processing modules 
(Image Acquisition and Segmentation categories) as well as 
the IdentifyPrimaryObjects module. The first method was 
developed for the Synthetic HSC Image Set. This is 
subsequently validated using the Histology Image Set, which 
represents the actual image analysis in cell counting. 

C.I  AUTOMATED CELL COUNTING METHOD FOR THE 
SYNTHETIC HSC IMAGE DATASET  
The IdentifyPrimaryObjects module in the CellProfiler 
software is able to identify and count objects in an image. Fig. 
2 depicts the process of this module. In order for the module 
to function, the input image must be a grayscale image and 
contains bright foreground cells on a dark background. 
Similar to other modules in CellProfiler, the 
IdentifyPrimaryObjects module has configurable options, 
allowing users to customize the settings according to their 
needs. To identify objects, the module follows a three-step 
method: 1) determining if the foreground region is an 
individual or clumped, 2) using a threshold to identify the 
edges of nuclei, and 3) making decisions on discarding or 
merging identified objects. Segmentation of the object or 
nuclei utilizes a threshold method [19] to recognize the edges 
of nuclei. This recognition of the edges of nuclei assists in 
differentiating between the foreground and background, in 
addition to using the intensity of the objects for 
differentiation. The success of cell identification and 
consequently counting is dependent on the contrast of the 
foreground cells with respect to the background, shapes, and 
intensity of the cells. Obviously, the identification problem 
becomes more difficult for images containing multiple cells 
closely clumped together with irregular shapes and random 
intensity. Nevertheless, the IdentifyPrimaryObjects module 
provides multiple options for each of the three-step methods. 

Threshold strategy and methods, as well as the 
declumping (intensity, shape, or none) and dividing lines of 
clustered objects (intensity, shape, propagate or none) 

methods were also explored. Common cells are brighter in the 
middle and dimmer towards the edge. Consequently, 
smoothened intensity image obtained via the intensity 
declumping option can be used to identify local maxima to 
provide a basis for declumping the foreground into multiple 
cells. For round-shaped cells, the shape declumping option 
can be used, whilst none declumping option is suitable for 
well-dispersed cells image, where no declumping is 
performed. 
 

 

Figure 2. The workflow of the automated cell counting 
method for the synthetic HSC image dataset (Adapted from 

[17]) 

For cells that do not touch one another, different threshold 
methods can be used to determine the edges of the cells. In 
this regard, the module provides various options for threshold 
strategy (global and local) and methods (minimum cross-
entropy, otsu, robust background and sauvola), with default 
and advanced settings. On the other hand, for images with 
cells that are not touching one another, either intensity, shape, 
propagate dividing line options or none at all, can be used. 
Where the dividing lines between clumped cells are dimmer 
than the remainder of the foreground, the intensity dividing 
line option has been shown to work well [20]. With the shape 
dividing line options, the dividing lines between clumped 
cells are made based on the shape of the clump, whilst a 
propagation algorithm is used to draw dividing lines with the 
propagate dividing line options. Similar to the declumping 
options, none dividing line options may be suitable for well-
dispersed cell images, in which case no dividing line is drawn. 

Table 3 illustrates 64 possible combinations/routes of 
threshold strategy and methods, including the declumping and 
dividing the line of clustered objects methods.  

Table 3. Overview of 64 routes combination for cell 
counting derived from the advanced setting (with yellow 

highlights routes representing some of the best performing 
routes) 

Route 

Threshold 
Declumping 

clustered 
objects 
Method 

Dividing 
lines of 

clustered 
objects 
method 

Strategy Method 

1 Default 
2 

Global 
Minimum-Cross 

Entropy 

Intensity 

Intensity 
3 Shape 
4 Propagate 
5 None 
6 

Shape 
Intensity 

7 Shape 
8 Propagate 
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9 None 
10 None N/A 
11 

Otsu 

Intensity 

Intensity 
12 Shape 
13 Propagate 
14 None 
15 

Shape 

Intensity 
16 Shape 
17 Propagate 
18 None 
19 None N/A 
20 

Robust 
Background 

Intensity 

Intensity 
21 Shape 
22 Propagate 
23 None 
24 

Shape 

Intensity 
25 Shape 
26 Propagate 
27 None 
28 None N/A 
29 

Adaptive 

Minimum Cross 
Entropy 

Intensity 

Intensity 
30 Shape 
31 Propagate 
32 None 
33 

Shape 

Intensity 
34 Shape 
35 Propagate 
36 None 
37 None N/A 
38 

Otsu 

Intensity 

Intensity 
39 Shape 
40 Propagate 
41 None 
42 

Shape 

Intensity 
43 Shape 
44 Propagate 
45 None 
46 None N/A 
47 

Robust 
Background 

Intensity 

Intensity 
48 Shape 
49 Propagate 
50 None 
51 

Shape 

Intensity 
52 Shape 
53 Propagate 
54 None 
55 None N/A 
56 

Sauvola 

Intensity 

Intensity 
57 Shape 
58 Propagate 
59 None 
60 

Shape 

Intensity 
61 Shape 
62 Propagate 
63 None 
64 None N/A 

 
It is one of the aims of this work to find the best-suited 

route, i.e., combinations of threshold strategy and method, 
declumping and dividing lines methods, which is able to 
accurately count the cell nuclei. Other variables were set to 
default while exploring the different routes. Each of the 64 
routes is used to automatically count the number of cells in 
the 500 mages from the Synthetic HSC image dataset. This 
method specifically considered the counting of nuclei only 
while disregarding other parameters, such as the identified 
object size. 

 

C.II INFLUENCE OF FOCUS 
The occurrence of blur images in a microscope is known as an 
aberration. This phenomenon occurs when rays fail to 
converge at one point due to a flaw in a lens or mirror. The 
influence of blurriness on automated cell counting was also 
investigated by using different focus ranges. 16 focus ranges 
between 1 and 48 are available and can be used on an image, 
with 5 focus ranges: F1, F14, F23, F35 and F48, considered in 
this paper. These focus ranges represent the amount of focus 
blur applied to the images. F48 is the most blurriness that can 
be applied to an image, whilst focus range 1 has no blurriness. 
Only two of the best routes were tested using five different 
focus ranges on the 500 images from the Synthetic HSC 
dataset. 

C.III AUTOMATED CELL COUNTING OF HISTOLOGY 
IMAGES 
The CellProfiler software can also be used to automatically 
count the number of cells in images extracted from the 
microscope, including brightfield, fluorescence and histology 
images. However, some pre-processing needs to be performed 
on the images before the IdentifyPrimaryObjects module can 
be used on the images. Fig. 3 depicts the pre-processing 
required to automate cell counting of raw microscopy images. 
Image acquisition pre-processing, using the UnmixColors and 
ImageMath modules, convert the raw microscopy images into 
grayscale images. Naturally, conversion of the raw 
microscopy images into grayscale images will result in the 
loss of information in terms of actual colours [20, 21], 
however, the IdentifyPrimaryObject module requires its input 
to be in grayscale. This suggests that the model utilizes only 
geometrical information and intensities in identifying cells. 
The image segmentation pre-processing, using the 
Gaussianfilter, Smooth, Threshold and MaskImage modules, 
further segment the grayscale images into bright foreground 
cells on a dark background. Pre-processed images can then be 
used directly for Object Identification using the 
IdentifyPrimaryObjects module.  

5 histology images from the Histology image dataset were 
used with the best route used to automatically determine the 
number of cells in the images. This was performed to explore 
the applicability of the CellProfiler software to automatically 
count the number of actual cells from microscopy images, 
particularly histology images. 

 

 

Figure 3. The workflow of the automated cell counting 
method for the histology image dataset 
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D. PERFORMANCE MEASURES 
Different modules in the Cell Profiler software are used to 
automatically determine the number of cells in an input 
image. Due to the limitation of the software, the number of 
counted cells using the software may not correspond to the 
actual number of cells in an image. A confusion matrix can be 
constructed, with 𝑓 ,  representing the frequency of images 
with 𝑖 actual number of cells but determined as 𝑗 number of 
counted cells using the software. ∑ 𝑓 ,∀ ,  then gives the total 
number of input images 𝑁 to the software, i.e., ∑ 𝑓 ,∀ , = 𝑁. 

Average cell accuracy 𝐴𝑐𝑐  quantifies the accuracy of 
the software in determining the number of cells in the input 
image, with high average cell accuracy 𝐴𝑐𝑐  indicating less 
deviation from the actual number of cells. This can be 
calculated from 

 

𝐴𝑐𝑐 =  
∑

| |
× ,∀ ,

× 100. (1) 

 
Overall image accuracy 𝐴𝑐𝑐  can be defined as the 

percentage of images whose number of cells within the 
images have been correctly determined by the software in 
proportion to the total number of input images. Whilst average 
cell accuracy 𝐴𝑐𝑐  considers the size of variations from the 
actual number of cells, image accuracy 𝐴𝑐𝑐  only 
considers whether a correct number of cells has been 
determined. Image accuracy 𝐴𝑐𝑐  is given by 

 

 𝐴𝑐𝑐 =  
∑ ,∀ × 100. (2) 

 
Image precision can be defined as the average number of 

images which have been correctly determined as having 𝑖 
number of cells in proportion to the total number of images 
which have been determined as having 𝑖 number of cells. On 
the other hand, image recall can be defined as an average 
number of images which have been correctly determined as 
having 𝑖 number of cells in proportion to the total number of 
images with 𝑖 actual number of cells. Image precision and 
recall may be determined using 

 

𝑃𝑟   =  
𝑓 ,

∑ 𝑓 ,∀
∀

. (3) 

𝑅𝑒𝑐  =  ∑ ,

∑ ,∀
∀ . (4) 

 
Commonly, a single metric, the F1 score, which combines 

image precision and recall [23, 24], is used as a metric. F1 
score is defined as the harmonic mean between precision and 
recall and may be determined using 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
× ×

×
. (5) 

III. RESULTS AND DISCUSSION 

A. SOFTWARE PLATFORM PRELIMINARY ASSESSMENT 
Two pieces of software: ImageJ and CellProfiler, were 
identified as possible platforms to develop the image 
processing method for cell counting applications. Both 

software can count cells using their default settings. 
Nonetheless, based on initial exploration and trials, 
CellProfiler outperforms ImageJ in terms of user experience. 

Although ImageJ is a powerful image analysis tool 
capable of delivering the desired results in image analysis, it 
is not user-friendly, particularly for first-time users. It requires 
the user to seek help from other sources to operate the 
software. Additionally, it does not give any standards for each 
setting, making it more challenging to generate good results. 
Consequently, more time is required to explore the software 
application. Even so, ImageJ employs a more flexible 
approach to its settings, offering experienced users more 
excellent options.  

On the other hand, CellProfiler guides the user throughout 
the interface. There are ‘help’ buttons to assist new users in 
using the different settings, and these enable users to select 
suitable options based on the CellProfiler’s recommendations. 
The modules also offer user-friendly settings that are mostly 
self-explanatory. Moreover, the CellProfiler’s pipeline 
provides an overview of the modules, making it easy to track 
and make any necessary adjustments. As a result of these 
assessments, CellProfiler has been selected as the most 
suitable platform for automated cell counting in this paper. 

B. CELLPROFILER SOFTWARE ON THE SYNTHETIC HSC 
IMAGE DATASET 
Cell nucleus identification and segmentation on images from 
the HSC image dataset uses only one module: the 
IdentifyPrimaryObjects module on the Cell Profiler software. 
500 images containing between 18 and 100 cells in a single 
image, were used to ascertain the best route from the 64 
possible routes. Sample of input HSC image, cell 
identification results and the output of HSC images are shown 
in Fig. 4. 
 

 

Figure 4. (a) Input of HSC image, (b) Cell identification 
results, and (c) Output of HSC image 

Fig. 5 shows the accuracy of the 64 possible routes: in 
terms of average image (blue dots) and cell accuracy (orange 
dots). They were a total of 52 routes with average image 
accuracies of below 20%, i.e., they were able to correctly 
determine the number of cells in less than 100 images from 
the total 500 images. 22 of the routes were unable to correctly 
determine the number of cells in any of the images. The 
highest average image accuracy was 85% on routes 34 and 35. 
Routes 61 and 62 gave a slightly lower accuracy of 84%, 
whilst routes 7 and 8 gave an accuracy of 81%. All 6 of the 
best routes in terms of average image accuracy employ 
‘Shape’ and ‘Propagate’ as the method to divide lines of 
clustered objects. Similar observations take place in terms of 
average cell accuracy, with routes 34 and 35 giving the 
highest average cell accuracy of 99.8%. Routes 7, 8, 61 and 
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62 gave a slightly lower accuracy of 99.7%. As such, routes 
34 and 35 represent the two best routes, with average image 
and cell accuracies of 85% and 99.8%, respectively; they were 
able to correctly predict 425 images from the total of 500 
images and failed to consider only 0.2% of cells from the 500 
images only.  

 

 

Figure 5. Accuracies of the 64 possible routes for automated 
cell counting 

 

 

Figure 6. F1 Score of the 64 possible routes for cell counting 
method on the synthetic HSC dataset 

F1 scores for the different routes were calculated and 
shown in Fig. 6. It can be seen that most of the routes (44 
routes) gave an F1 score of less than 0.1. There were four 
routes with F1 scores greater than 0.8 routes 34, 35, 61 and 
62. Routes 61 and 62 gave F1 scores of 0.82, whilst the 
highest F1 scores of 0.83 were obtained from routes 34 and 
35. Despite giving F1 scores which were lower than 0.8, 
routes 7 and 8 demonstrated respectable F1 scores of 0.76. 

It is evident from the above that routes 7, 8, 34, 35, 61 and 
62 are some of the best routes that can be used to determine 
the number of cells in images in terms of average cell 
accuracy, image accuracy and F1 scores. Routes 7, 34 and 61 
were further analyzed in order to distinguish their ability to 
determine the number of cells in images with a small and 
large number of cells. Images with 18~57 nuclei counts are 
considered to have a small number of cells, whilst images 
with 61~100 nuclei counts are considered to have a large 

number of cells. It was found that routes 7, 34 and 61 had 
small/large nuclei average image accuracies of 
92.42%/69.6%, 94.8%/75.2% and 94.0%/74.0%, respectively. 
These are approximately in the ratio 4:3. Their small/large 
nuclei counting F1 Score segregation of 0.474/0.289, 
0.484/0.347, and 0.482/0.341, respectively. From these 
results, it can be derived that the software is more able to 
accurately ascertain the number of cells in images with a 
small number of cells. Images with a large number of cells 
may contain closely packed and tightly arranged nuclei, which 
makes the identification more difficult. 

B.I INFLUENCE OF FOCUS RANGE 
The influence of focus range on the ability of the CellProfiler 
software to determine the number of cells in images was 
investigated. Only two of the best routes were considered for 
this purpose, routes 34 and 61. Fig. 7 depicts image accuracies 
obtained on different focus ranges, with visual presentations 
of focus range F1, F14, F23, F35 and F48 shown on the 
insets. It can be seen that as the amount of focus blur applied 
increases, the accuracy of the routes decreases significantly. 
This trend illustrates that image with low quality (one of the 
factors is blurriness) would tremendously affect the accuracy 
of the image analysis, thus directly influencing the accuracy 
of the cell counting. 
 

 

Figure 7. The accuracy of selected routes when blurriness is 
applied to the images, with insets showing five focus ranges 

before and after applied to the algorithm under different 
blurry levels 

C. HISTOLOGY IMAGE SET 
The CellProfiler software was also tested by utilizing 5 
histology images, with histology images 1, 2, 3, 4 and 5 
containing 66, 103, 29, 20 and 68 cells, respectively. Using 
the best route, i.e., route 34, the number of cells given by the 
software were 61, 101, 44, 13 and 72, respectively, giving 0% 
image accuracy but average cell accuracy of 79.6%. The fact 
that the software was unable to accurately determine the 
number of cells in any of the histology images is worrying; 
however, the fact that the deviation from the actual number of 
cells is small, as given by the almost 80% cell accuracy, 
necessitates further investigation. 

Each of the 5 histology images was manually analyzed 
and shown in Fig. 8. Three types of identification were 
obtained: a) correctly identified cell (the coloured objects are 
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outlined), b) unidentified cell (the coloured object without the 
red outline), and c) incorrectly identified cell (the red outline 
without the object). This information is tabulated in Table 4. It 
can be seen that the software is able to correctly identify a 
bulk of the cells within the images, with 57, 83, 27, 13 and 51 
cells correctly identified from the 66, 103, 29, 20 and 68 cells 
in images 1, 2, 3, 4 and 5, respectively. Some of the cells 
cannot be identified by the software, with false identification 
of non-cells as cells. 

(a) (b) (c) 

  
(d) (e) 

Figure 8. Output from the CellProfiler software for the 
automated cell counting for images (a) 1, (b) 2, (c) 3, (d) 4, 

and (e) 5 

Table 4. Analysis on the automated cell counting method 
on the histology images 

Image 
Actual no. 

of cell 
Correctly 

identified cell (a) 
unidentifie
d cell (b) 

incorrectly 
identified 

cell (c) 
1 66 57 9 4 
2 103 83 20 18 
3 29 27 2 17 
4 20 13 7 0 
5 68 51 17 21 

D. DISCUSSION 
Analysis of the results suggests that routes 34 and 35, 
followed by routes 61 and 62, are able to automate cell 
counting of synthetic HSC images satisfactorily. Particularly, 
routes 34 and 35 gave average image and cell accuracies of 
85% and 99.8%, respectively, and an F1 score of 0.83. The 
routes comprise the threshold method, declumping clustered 
objects and dividing the lines of clustered objects. Cell 
counting highly relies on thresholding, as also mentioned by 
others [25–27], with the threshold helping in the conversion 
of images into binary form, thereby making it easier to 
distinguish the object’s edges.  

All routes 34, 35, 61 and 62 utilized adaptive as their 
threshold strategy and ‘Shape’ and ‘Propagate’ as methods of 
declumping the clustered objects and dividing the clustered 
objects, respectively. As each pixel’s threshold is calculated, 
the adaptive threshold responds to variations in background 

and foreground intensities across the image [17]. This strategy 
is best suited for the Synthetic HSC Image Set because High 
Content Screening images are highly contrasted such that the 
foreground can be detected almost immediately. In image 
processing, cell counting relies on cell identification and 
segmentation [28, 29], but this is only partially true for 
Synthetic Image Sets. The reason is that the HSC images are 
already ideal for the IdentifyPrimaryObjects to function, 
perfectly segmenting the objects, as shown in Fig. 4. 

Analysis of the ability of the software to determine the 
number of cells in images with a small and large number of 
cells was also performed. It has been shown that the software 
is better able to determine the number of cells in images with 
a small number of cells. This may be due to the overlapping 
and congested nature of images with a large number of cells, 
making it difficult for the software to determine the cell 
numbers. In order to increase the accuracy of high nuclei 
counting, the Watershed module may be utilized after the 
IdentifyPrimaryObjects to segment the objects further. It has 
also been found that the accuracy of cell counting is highly 
dependent on the blurriness of the image, with accuracy 
decreasing with an increase in blurriness. This highlights the 
importance of getting highly focused images. Indeed, modern 
microscopes are commonly fitted with auto-focus as standard 
and there exists different algorithms that may be used to 
detect blurriness in microscopic images [30]. These 
algorithms can be combined with the proposed method to give 
a warning to users of possible errors in cell counting due to 
the blurring of images. However, this is outside the scope of 
this current research but provides new direction on this topic. 

The applicability of the software was also investigated 
using some Histology images; however, the result was not 
that encouraging, as the software was unable to accurately 
determine the number of cells in any of the histology images. 
However, in terms of average cell accuracy, it gave 79.6% 
cell accuracy. Further investigation into the output from the 
individual histology images shows that the software is able to 
correctly identify the bulk of the cells within the histology 
images, albeit some cells were left unidentified and some 
misidentified. The misidentification may be due to the faint 
colour of the stain, making it difficult to distinguish the 
foreground and background. Therefore, the software is unable 
to pick up the object’s signal intensity.  

IV. CONCLUSION 
Manual cell counting using Hemocytometer, although 
inexpensive, can be troublesome and prone to error. Current 
methods of automating the cell-counting are expensive and 
require expert users. This study explored the use of a low-cost 
method for automating the cell counting process by using the 
freely available image analyst software for image-based cell 
counting. The use of the advanced setting in CellProfiler was 
proven effective for cell counting applications from input cell 
images. Of the 64 possible combinations of image processing 
routes, routes 34 and 35 have been shown to have the highest 
cell and image accuracies of 85% and 99.8%, respectively. 
They also resulted in the highest F1 score of 0.83. Analysis of 
the results has shown that higher accuracy is obtained when 
processing images with a small number of cells. Routes 34 
and 35 utilize adaptive as their threshold strategy and ‘Shape’ 
and ‘Propagate’ as methods of declumping the clustered 
objects and dividing the clustered objects, respectively. Cell 
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counting via image processing was also found to be highly 
influenced by the focus blur.  

As the CellProfiler software is also used on microscopy 
images, the applicability of the software on histology images 
was also explored by utilizing additional pre-processing 
before the images can be fed into the automatic counting 
module. Unfortunately, the software performs poorly in terms 
of image accuracy, and it is unable to accurately count the 
exact number of cells in any of the 5 histology images. Cell 
accuracy shows a better prospect, with a cell accuracy of 
79.6%. These encouraging results prompt us to perform a 
deeper investigation, whereby it has been demonstrated that 
the software is able to correctly identify the bulk of the cells 
within the histology images, albeit some cells were left 
unidentified and some misidentified. 

Good image quality is the key to successful image-based 
cell counting. To further enhance the accuracy, the Watershed 
module can be included in the image processing steps, 
whereby the module could ensure that the objects are further 
segmented, improving the number of objects identified. 
Moreover, the robustness of the results can be measured by 
comparing with other methods and validated with the manual 
cell counting method and images taken from primary data. 
The outcome of the present work suggests that the proposed 
method to automate cell counting can be effectively used by 
operators. 
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