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ABSTRACT This paper introduces Learnable Extended Activation Function (LEAF) - an adaptive
activation function that combines the properties of squashing functions and rectifier units. Depending on
the target architecture and data processing task, LEAF adapts its form during training to achieve lower
loss values and improve the training results. While not suffering from the "vanishing gradient" effect,
LEAF can directly replace SiLU, ReLU, Sigmoid, Tanh, Swish, and AHAF in feed-forward, recurrent,
and many other neural network architectures.
The training process for LEAF features a two-stage approach when the activation function parameters
update before the synaptic weights. The experimental evaluation in the image classification task shows
the superior performance of LEAF compared to the non-adaptive alternatives. Particularly, LEAF-as-
Tanh provides 7% better classification accuracy than hyperbolic tangents on the CIFAR-10 dataset. As
empirically examined, LEAF-as-SiLU and LEAF-as-Sigmoid in convolutional networks tend to "evolve"
into SiLU-like forms. The proposed activation function and the corresponding training algorithm are
relatively simple from the computational standpoint and easily apply to existing deep neural networks.

KEYWORDS Adaptive Hybrid Activation Function, Trainable Activation Function Form, Double-Stage
Parameter Turning Process, Squashing Functions, Linear Units, Deep Neural Networks.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have become a widely
used tool for various data processing tasks [1]. DNNs

found their application in image processing – recognition
and classification, time series processing – extrapolation and
forecasting, natural language processing (NLP) and video
stream analysis, controlling complex systems and processes,
monitoring and fault diagnosis, and many other areas.

One prominent feature of artificial neural networks
(ANNs), deep and shallow, is their universal approximation
capabilities [2] and their ability to "learn" from the training
data. The definition of this "learning" process is a parameter
optimization task. During training, the network adjusts its
synaptic weights in each neuron and the overall architecture
to optimize the selected learning criteria – the goal function.

Elementary perceptrons of F. Rosenblatt traditionally
serve as the base building blocks of feed-forward artificial
neural networks. The elementary perceptron uses squashing

functions as its non-linearity elements, primarily – sigmoidal
(σ-function), hyperbolic tangent (tanh), arctangent (arctan),
Softsign, Satlin, and other functions. One common property
of such squashing functions is their bounded change inter-
val, with the output values heading to the corresponding
bounds asymptotically.

Compared to feed-forward ANNs, recurrent networks like
LSTM and GRU use some form of gated units [3], [4] –
ANN blocks that simultaneously employ the sigmoid and
hyperbolic tangent functions to control the flow of infor-
mation in the network. Transformer networks with gating
layers [5] and GLU activation functions [6] implement a
similar approach to improve the training results.

While sigmoidal activation functions provide the network
with universal approximation capabilities, according to [2],
the squashing nature of such functions creates difficulties for
the gradient-based optimization procedures. As the output
value approaches the asymptotes, the corresponding deriva-
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tive approaches zero, blocking backward propagation and
stopping the training process. In other words, such networks
are prone to the "vanishing gradient" effect. The severity of
this undesired effect increases with the number of layers in
the network.

In order to avoid the "vanishing gradient" effect, DNNs
often employ activation functions from the rectifier units
family, namely piece-wise activation functions such as
ReLU, PReLU, LReLU, NReLU, ELU, and others [7].

Like with the trapezoidal rule in integration, the accuracy
of piece-wise approximation depends on the number of
segments, leading to a significant increase in the network’s
synaptic weights and layers compared to the alternatives
with universal approximators. At the same time, an increase
in the number of layers and parameters makes the network
slower to train, requires additional computational resources,
and, what is especially important in practical applications,
requires a vast amount of task-specific training data, which
is hard to collect.

Therefore, researchers develop new hybrid activation
functions that combine the strengths of sigmoidal and piece-
wise approximations, such as SiLU [8], Swish [9], S-
shaped [10], WiG [11], AHAF [12], and others. Combining
the strengths allows training using smaller data sets and
reducing the total training time. Meanwhile, applying such
hybrid functions requires careful selection and tuning of
their free parameters, a non-formalized task typically based
on empirical rules and a specific user’s experience.

One possible idea for selecting free parameters in hybrid
activation functions includes tuning the parameters during
training [13]–[18]. The previously presented approach in-
cludes a two-stage process that tunes the synaptic weights
first and the activation function parameters second. This
approach improves the approximation capabilities of the
network but increases the total training time.

Hence, [12], [19] introduce adaptive activation functions
and the corresponding training algorithms that tune the
activation function parameters together with the synaptic
weights of individual neurons.

Meanwhile, the mentioned activation functions do not
coincide with the classic sigmoidal functions and hyperbolic
tangents, substantially limiting their approximation capabil-
ities. Based on that, one reasonable idea is introducing a
function and the corresponding ANN neuron that would
combine the activation functions from shallow and deep
neural networks.

This paper introduces Learnable Extended Activation
Function (LEAF) and a method for tuning its parameters
during training. LEAF combines the properties of recti-
fier units and squashing functions, working as a suitable
replacement for ReLU, SiLU, the sigmoidal function, and
hyperbolic tangent.

II. THE LEAF-BASED NEURON ARCHITECTURE
The elementary perceptron of F. Rosenblatt serves as the
base ANN block and implements signal transformation of

the following form:

ŷj(k) = ψj

(
θj0 +

n∑
i=1

wjixi(k)

)

= ψj

(
n∑

i=0

wjixi(k)

)
,

(1)

where j - index of the neuron, k - discrete data processing
time step, k = 1, 2, 3, ..., N, ..., yj(k) - output signal of the
j-th neuron on step k, xi(k) - i-th element of the input
vector x on time step k, i = 0, 1, 2, ..., n, wji - synaptic
weight on the i-th input of the j-th neuron, θj - threshold
signal of the j-th neuron, θj ≡ wj0, x0 ≡ 1, uj(k) - the
signal of internal activation in the j-th neuron, ψj - non-
linear transformation on the output of the j-th neuron.

Or in a vector form for a specific neuron j:

ŷj(k) = ψj

(
wT

j x(k)
)
= ψj (uj(k)) ,

where j - index of the neuron, k - time step, x(k) - the
(n+1)× 1-dimentional vector of the input signals, x0 ≡ 1,
wj - the (n+1)× 1-dimentional vector of weights, uj(k) -
the signal of internal activation in the j-th neuron, ψj(uj(k))
- non-linear transformation on the output of the j-th neuron.

Activation function ψj in the perceptron provides the non-
linearity for approximation. We propose the learnable non-
linear activation function of the following form:

ψj(uj) = (ρj1uj + ρj2)σ(ρj3uj) + ρj4 =

=
ρj1uj + ρj2
1 + e−ρj3uj

+ ρj4,
(2)

where parameters ρj1, ρj2, ρj3, ρj4 define the activation
function form and get tuned during the neural network
training.

Fig. 1 shows the architecture of a neural network neuron
with LEAF, including the linear transformation and the
activation function. The figure shows that the neuron with
LEAF has n+5 trainable parameters, where n corresponds
to the number of inputs, compared to n + 1 in the classic
neural network node.

Depending on the values of trainable parameters, LEAF
can assume the shape and properties of other known ac-
tivation functions. LEAF includes many known activation
functions as its corner cases, including ReLU, SiLU, hy-
perbolic tangent, the sigmoidal function, and even adaptive
functions, such as Swish and AHAF. Table 1 shows the
LEAF parameter values that provide exact replacements or
sufficiently close approximations of the previously known
activation functions.

As the table illustrates, replacing non-adaptive activations
with LEAF requires setting the LEAF parameters to the
pre-determined constant values. Replacement of adaptive
activations, such as Swish and AHAF, requires setting
some LEAF parameter values to the corresponding values
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Figure 1. Neuron with Learnable Extended Activation Func-
tion (LEAF)

Table 1. Values of trainable parameters that transform LEAF
to other known activation functions

Equivalent
function

LEAF parameter values
ρ1 ρ2 ρ3 ρ4

ReLU 1 0 +∞ 0

SiLU 1 0 1 0

Tanh 0 2 2 −1

Sigmoid 0 0 1 0

Swish 1 0 ρ3 0

AHAF ρ1 0 ρ3 0

in the original activation functions. For example, AHAF
parameters β and γ in [12] correspond to parameters ρ1
and ρ3 in LEAF.

III. THE LEAF-BASED NEURON TRAINING PROCESS
The training process depends on the loss function defini-
tion. Without losing generality, we demonstrate the training
process using the traditional quadratic criterion:

Ej(k) =
1

2
e2j (k) =

1

2
(yj(k)− ŷj(k))

2
, (3)

where yj(k) - the expected output of the j-th neuron, ŷj(k)
- the actual output of this neuron on time step k.

For an elementary perceptron of F. Rosenblatt, the loss
defines as:

Ej(k) =
1

2
(yj(k)− ŷj(k))

2
=

=
1

2
(yj(k)− ψj(uj(k)))

2
=

=
1

2

(
yj(k)− ψj

(
n∑

i=0

wjixi(k)

))2

,

(4)

so that the delta rule for synaptic weight wji on time step
k equals:

wji(k) = wji(k − 1)− ηw(k)
δEj(k)

δej(k)

δej(k)

δwji
=

= wji(k − 1) + ηw(k)δj(k)xi(k),

(5)

where ηw(k) - the learning rate on time step k, δj(k) =
ej(k)ψ

′

j(uj(k)) - the delta-error value propagating between
the layers during training in multi-layer networks. The delta-
error value strongly depends on the activation function
derivative, leading to the "vanishing gradient" effect and
effectively stopping the backpropagation when ψ

′

j(uj(k))
approaches zero.

The training process for the LEAF-based neuron uses a
variant of the double-stage parameter tuning (DSPT) [12]
procedure. The first stage includes updating the trainable
activation function parameters ρ1, ..., ρ4 while the synaptic
weights wj0, ..., wji, ..., wjn remain fixed. The second stage
includes updating the synaptic weights without tuning the
activation function parameters but using their corrected
values to calculate the loss.

The delta rule for activation function parameters ρ1, ..., ρ4
depends on the corresponding partial derivatives.

The partial derivative of the output signal ψj(uj) by ρ1
on time step k is:

dψj(uj)

dρj1
=
d((ρj1uj + ρj2)σ(ρj3uj) + ρj4)

dρj1
=

=
d(ρj1uj + ρj2)

dρj1
σ(ρj3uj) =

=
d(ρj1uj)

dρj1
σ(ρj3uj) = ujσ(ρj3uj),

where j - index of the neuron, σ(var) = 1
1+e−var - the

sigmoidal function, uj - the signal of internal activation,
and time indexes k, (k − 1) are omitted for brevity.

Similarly, the definition of partial derivatives for ρ2, ρ3, ρ4
on time step k is:

dψj(uj)

dρj2
=
d((ρj1uj + ρj2)σ(ρj3uj) + ρj4)

dρj2
=

=
d(ρj2)

dρj2
σ(ρj3uj) = σ(ρj3uj);

dψj(uj)

dρj3
=
d((ρj1uj + ρj2)σ(ρj3uj) + ρj4)

dρj3
=

= (ρj1uj + ρj2)σ(ρj3uj)σ(−ρj3uj)uj ;

dψj(uj)

dρj4
=
d((ρj1uj + ρj2)σ(ρj3uj) + ρj4)

dρj4
=
dρj4
dρj4

= 1.

With the partial derivatives defined, the delta rule for
parameters ρ1, ρ2, ρ3, ρ4 on time step k on the first stage
of the DSPT procedure gets the following form:
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ρj1(k) =ρj1(k − 1)− ηρ1(k)
δEj(k)

δρj1
=

=ρj1(k − 1)− ηρ1(k)ej(k)
δψj(k)

δρj1
=

=ρj1(k − 1) + ηρ1
(k)·

· (yj(k)− ψj(uj(k))) ·
· uj(k)σ(ρj3(k − 1)uj(k));

(6)

ρj2(k) =ρj2(k − 1) + ηρ2
(k)·

· (yj(k)− ψj(uj(k))) ·
· (ρj1(k − 1)uj(k) + ρj2(k − 1))·
· σ(ρj3(k − 1)uj(k))·
· σ(−ρj3(k − 1)uj(k)) · uj(k)v

(7)

ρj3(k) =ρj3(k − 1) + ηρ3
(k) · (yj(k)− ψj(uj(k))) ·

· σ(ρj3(k − 1)uj(k));
(8)

ρj4(k) =ρj4(k − 1) + ηρ4
(k) · (yj(k)− ψj(uj(k))) , (9)

where ψj(uj(k)) = LEAF j(uj(k), ρj1(k − 1), ρj2(k −
1), ρj3(k− 1), ρj4(k− 1)), and ηρ1

ηρ2
, ηρ3

, ηρ4
- learning

rates for ρ1, ρ2, ρ3, ρ4 correspondingly.
The second stage of DSPT uses the corrected loss value:

Ẽj(k) =yj(k)− ψj(uj(k), ρj1(k), ρj2(k), ρj3(k), ρj4(k))

=yj(k)− ((ρj1(k)uj(k) + ρj2(k))·
· σ(ρj3(k)uj(k)) + ρj4(k))

=yj(k)− (ρj1(k)w
T
j (k − 1)x(k) + ρj2(k))·

· σ(ρj3(k)wT
j (k − 1)x(k))− ρj4(k).

(10)

The delta rule for synaptic weights depends on the partial
derivative by ũj(k):

dψj(ũj)

dũj
=
d((ρj1ũj + ρj2)σ(ρj3ũj) + ρj4)

dũj
=

=ρj1σ(ρj3ũj) + (ρj1ũj + ρj2)·
· σ(ρj3ũj)σ(−ρj3ũj)ρj3,

(11)

where j - index of the neuron, ũj - the corrected signal of
internal activation after updating the LEAF parameters, and
time indexes k, (k − 1) are omitted for brevity.

The second stage of DSPT updates the synaptic weights
based on the corrected loss value and the updated LEAF
parameters:

wji(k) = wji(k − 1) + ηw(k)ẽj(k)
dψj(ũj(k)

dũj(k))
xi(k) =

=wji(k − 1) + ηw(k)ẽj(k)·
· ρj1(k)σ(ρj3(k)ũj(k)) + (ρj1(k)ũj(k) + ρj2(k))·
· σ(ρj3(k)ũj(k))σ(−ρj3(k)ũj(k))ρj3(k) · xi(k),

(12)

where j - index of the neuron, ũj - the corrected signal
of internal activation after updating the LEAF parameters,
wji(k−1) - synaptic weight for the i-th input on the previous
time step, ρj1(k), ..., ρj4(k) - the updated LEAF parameter
values after the first stage of DSPT, ηw(k) - learning rate
for synaptic weights w on time step k.

In summary, the neural network training procedure for
the LEAF-based networks is close to the standard gradient
procedure with backward error propagation. The only dif-
ference is that the procedure for LEAF computes the errors
twice: once before clarifying the LEAF parameters and one
more time after the clarification.

In a multi-layer network, it is sensible to update the LEAF
parameters across all layers first, update the non-activation
parameters across all layers second and repeat this procedure
for each new mini-batch in the training set [20].

IV. EXPERIMENTAL EVALUATION
We evaluate the performance of LEAF on the image classi-
fication task using two data sets: Fashion-MNIST [21] and
CIFAR-10 [22]. We use two neural network architectures
for evaluation: LeNet-5 [23] and KerasNet [24]. In order to
keep the results reproducible and comparable, we use 42
as the fixed seed value and the same starting weights for
all network variants. During training, we record the average
training set loss across mini-batches and the resulting test
set error at the end of each epoch. The implementation
is available on GitHub: s-kostyuk/leaf-aaf. The following
subsections provide details on the experiment process.

A. AUGMENTATION AND BATCHING
We employ data augmentation for both the Fashion-MNIST
and CIFAR-10 datasets to extend the dataset and improve
the robustness of the trained models. The experiment im-
plementation executes a random horizontal flip with a prob-
ability of 50% and a random two-dimensional shift by at
most 0.1 times the image size. The implementation applies
augmentation on a mini-batch basis, so the same image gets
different random transformations on different epochs.

We use the 5:1 split between the training and the test
sets, the standard split for Fashion-MNIST and CIFAR-
10. The mini-batch size is 128 images per mini-batch for
optimal GPU usage, reducing the data transfer time between
the system RAM and the GPU RAM (VRAM), hence
shortening the epoch duration.

B. NEURAL NETWORK ARCHITECTURE
LeNet-5 and KerasNet are multi-layer convolutional neural
networks (CNNs) with different architectures. LeNet-5 is the
simpler of the two, containing two convolutional layers with
max pooling, one fully connected layer with an activation
function, and one fully connected layer on the output with
Softmax. Fig. 2 illustrates the architecture of LeNet-5.

KerasNet has a VGG-like architecture with two convolu-
tional layers in series. KerasNet has, in total, four convolu-
tional layers, two max-pooling layers, two two-dimensional
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Figure 2. The architecture of LeNet-5

stochastic dropout [25] layers, two fully-connected linear
layers, and one stochastic dropout layer between the fully-
connected layers. While activation functions in the internal
layers differ between the experiments, the output activation
function for KerasNet is always Softmax.

Fig. 3 illustrates the architecture of KerasNet. In this
illustration, we combined the activation function blocks with
the corresponding convolutional and fully-connected blocks
to reduce the figure size.

C
o

n
v

2
d

, 3
x

3
, strid

e
=

1
x

1
, p

a
d

=
1

x
1

. A
ct. fn

. 1

3��������� 3��������� 5��	 ��e
� e
s

1�	 ��e
� e
s

F
la

tte
n

in
g

 la
y

e
r

M
a

x
P

o
o

l2
d

, 2
x

2
, strid

e
=

2
x

2

D
ro

p
o

u
t2

d
, p

=
0

.2
5

L
in

e
a

r fu
lly

 co
n

n
e

cte
d

 la
y

e
r. A

ct. fn
. 5

D
ro

p
o

u
t, p

=
0

.2

S
o

ftm
a

x

L
in

e
a

r fu
lly

 co
n

n
e

cte
d

 la
y

e
r

C
o

n
v

2
d

, 3
x

3
, strid

e
=

1
,1

, p
a

d
=

0
. A

ct. fn
. 2

(k)x(k)

C
o

n
v

2
d

, 3
x

3
, strid

e
=

1
x

1
, p

a
d

=
1

x
1

. A
ct. fn

. 3

6
4

 ch
a

n
n

e
ls

6
4

 ch
a

n
n

e
ls

M
a

x
P

o
o

l2
d

, 2
x

2
, strid

e
=

2
x

2

D
ro

p
o

u
t2

d
, p

=
0

.2
5

C
o

n
v

2
d

, 3
x

3
, strid

e
=

1
,1

, p
a

d
=

0
. A

ct. fn
. 4

Figure 3. The architecture of KerasNet

C. NETWORK TRAINING PROCEDURE
We train all network variants for 100 epochs from scratch,
minimizing the cross-entropy loss on the training data set.

Unless explicitly stated, all experiments use the ADAM
optimizer with the base learning rate of 1 × 10−3. For
networks with trainable activation functions (AHAF and
LEAF), we evaluate both the classic and the double-stage
parameter tuning (DSPT) processes. The DSPT implementa-
tion employs separate optimizer instances for the activation
function parameters and the non-activation synaptic weights.

For networks with LEAF, we reduce the learning rate
for parameters ρ2 and ρ4 to 1 × 10−6 to stabilize the
training process with ADAM. Here and below, we denote
this modified procedure with reduced learning rates for ρ2
and ρ4 as "P24Sl".

In order to validate the training process for LEAF-as-
ReLU, we run a separate set of experiments using the
RMSprop optimizer instead of ADAM. In this set of exper-
iments, we set the learning rate to 1× 10−4 for all network
parameters, including LEAF parameters ρ2 and ρ4.

D. ACTIVATION FUNCTION VARIANTS
For all networks and data sets, we evaluate four different
sets of activation functions:

• ReLU-like activations;
• SiLU-like activations;
• Sigmoid-like activations;
• Tanh-like activations.
For ReLU-like and SiLU-like activations, we compare the

performance between the base network with non-adaptive
activations, the AHAF-based network, and the LEAF-based
network. Following Table 1, we set the initial parameters
of AHAF and LEAF to closely follow the base functions,
ReLU or SiLU, depending on the comparison set. As
sufficiently close approximations of ReLU, we use AHAF
with γ = 216 and LEAF with ρ3 = 216 instead of setting
the corresponding parameters to +∞.

We use a similar approach to compare the networks with
Sigmoid-like and Tanh-like activations. As AHAF does not
replace Sigmoid and Tanh, we only compare the base and
the LEAF-based network variants.

The networks with adaptive activations (AHAF and
LEAF) use adaptive activations across all hidden layers,
both the convolutional and the fully connected. The only
exception from the rule is the output network layer that
always employs the non-adaptive Softmax activation.

During the evaluation, we discovered differences in the
output values between the built-in SiLU implementation in
PyTorch and the same function implemented from scratch.
The delta squared error between two implementations
reaches about 9× 10−13 for an NVIDIA GPU with float32.
Fig. 4 illustrates the error.

Figure 4. The delta squared error between two SiLU imple-
mentations

In order to keep the performance of all SiLU-like func-
tions on the same level, the experiment uses a custom
implementation of the following form as the base function:

import torch
def silu_manual(x):

return x * torch.sigmoid(x)

E. EXECUTION ENVIRONMENT
The experiment implementation uses PyTorch 2.0 [26] as the
deep learning framework and Python 3.8 as the program-
ming language. We execute all experiments on a desktop
computer with the NVIDIA RTX A4000 GPU. The floating
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point precision is 32 bits (float32) for all experiments, the
default floating point precision value for GPU in PyTorch.

V. RESULTS AND DISCUSSION
A. NETWORKS WITH LINEAR UNITS - TRAINING
RESULTS
Networks with linear units (ReLU-like and SiLU-like acti-
vations) show high performance on the image classification
task. As expected, the additional complexity of the KerasNet
model provides a measurable advantage over LeNet-5 on the
Fashion-MNIST dataset and up to 7% better classification
accuracy on CIFAR-10. Tables 2 and 3 illustrate the best
test set accuracy across all training epochs.

Table 2. Training results for LeNet-5, up to 100 epochs

F-MNIST CIFAR-10
Activ. Init. Procedure Acc.,% Ep. Acc.,% Ep.
ReLU N/A Classic 92.39% 89 79.09% 93
AHAF ReLU Classic 92.56% 57 78.90% 90
AHAF ReLU DSPT 92.65% 59 78.56% 91
LEAF ReLU P24Sl 92.75% 89 79.35% 75
LEAF ReLU DSPT, P24Sl 92.56% 100 79.38% 86
SiLU N/A Classic 92.29% 42 78.08% 84
AHAF SiLU Classic 92.61% 37 78.53% 92
AHAF SiLU DSPT 92.56% 76 78.55% 87
LEAF SiLU P24Sl 92.57% 91 78.41% 97
LEAF SiLU DSPT, P24Sl 92.56% 98 78.89% 87

Table 3. Training results for KerasNet, up to 100 epochs

F-MNIST CIFAR-10
Activ. Init. Procedure Acc.,% Ep. Acc.,% Ep.
ReLU N/A Classic 93.97% 93 83.74% 91
AHAF ReLU Classic 93.85% 73 84.30% 94
AHAF ReLU DSPT 94.00% 96 84.32% 99
LEAF ReLU P24Sl 94.02% 100 84.21% 75
LEAF ReLU DSPT, P24Sl 94.20% 96 84.26% 98
SiLU N/A Classic 93.75% 89 85.50% 97
AHAF SiLU Classic 94.25% 89 86.23% 96
AHAF SiLU DSPT 94.24% 85 86.55% 99
LEAF SiLU P24Sl 94.20% 91 86.41% 93
LEAF SiLU DSPT, P24Sl 94.27% 93 86.52% 99

While better than the base model, the performance of
AHAF-based and LEAF-based networks remains on the
same level. The corresponding LEAF and AHAF variants
remain close across all epochs.

Like AHAF, LEAF keeps its general form while mostly
manipulating the angle of its linear portion (the ρ1 param-
eter). The ρ3 parameter in LEAF-as-ReLU remains mostly
unchanged due to its gradient properties with high initial
values. Fig. 5 displays the LEAF-as-SiLU function form
after 100 training epochs with DSPT and P24Sl.

Depending on the starting values of non-activation synap-
tic weights, either AHAF or SiLU gets an advantage in
performance. We ran additional experiments on CIFAR-10
with different seed values to validate this observation. Out
of five runs, AHAF-as-SiLU shows the best performance
with the 42, 128, and 7823 seed values, while LEAF-as-
SiLU shows the best with seeds 100 and 1999. In a LeNet-
5 network, AHAF-as-SiLU and AHAF-as-ReLU show the

Figure 5. Activation function form of randomly sampled
LEAF-as-SiLU instances in KerasNet on CIFAR-10. "L"
denotes the layer, "F" denodes an instance in this layer

best with seeds 1999 and 7823 correspondingly, while
LEAF-as-ReLU shows the best for the rest of the seeds.

B. NETWORKS WITH SQUASHING UNITS - TRAINING
RESULTS
One of the LEAF strengths is its ability to replace squashing
functions in deep neural networks. Applying LEAF-as-Tanh
and LEAF-as-Sigmoid in convolutional networks leads to
some interesting results. Tables 4 and 5 show the training
results for LeNet-5 and KerasNet.

Table 4. Training results for LeNet-5, up to 100 epochs

F-MNIST CIFAR-10
Activ. Init. Procedure Acc.,% Ep. Acc.,% Ep.
Tanh N/A Classic 91.70% 99 76.48% 93
LEAF Tanh P24Sl 92.45% 97 78.24% 73
LEAF Tanh DSPT, P24Sl 92.55% 97 78.44% 75
Sigm. N/A Classic 91.21% 99 71.76% 97
LEAF Sigm. P24Sl 91.83% 93 71.51% 98
LEAF Sigm. DSPT, P24Sl 91.60% 98 71.95% 100

Table 5. Training results for KerasNet, up to 100 epochs

F-MNIST CIFAR-10
Activ. Init. Procedure Acc.,% Ep. Acc.,% Ep.
Tanh N/A Classic 91.79% 96 77.77% 99
LEAF Tanh P24Sl 93.12% 79 84.46% 99
LEAF Tanh DSPT, P24Sl 93.35% 94 84.46% 100
Sigm. N/A Classic 92.05% 94 75.99% 91
LEAF Sigm. P24Sl 92.97% 91 77.21% 99
LEAF Sigm. DSPT, P24Sl 92.61% 100 77.61% 99

Utilizing its self-adaptation ability, LEAF-as-Tanh per-
forms significantly better than its base counterpart. The
performance of LEAF-as-Tanh approaches the performance
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of LEAF-as-ReLU and LEAF-as-SiLU on the same datasets,
showing the potential of adaptive activation functions even
in "classic" environments dominated by linear units. The
performance of LEAF-as-Sigmoid is significantly lower due
to the "vanishing gradient" effect on negative inputs.

Based on the training process recordings, LEAF-as-Tanh
continues updating its parameters and reaches higher perfor-
mance while the base Tanh function leads the network to a
performance plateau. Fig. 6 illustrates the loss and accuracy
across epochs for LEAF-as-Tanh.

Figure 6. The training set loss and the test set accuracy
across epochs for KerasNet with Tanh-like activations on
CIFAR-10

Analyzing the activation function form, LEAF-as-Tanh
and LEAF-as-Sigmoid attempt to "rectify" themselves in a
convolutional network, hinting at the advantages of linear
functions in CNNs. Fig. 7 shows the form of LEAF-as-
Tanh in KerasNet after training on CIFAR-10 with DSPT
and P24Sl. Fig. 8 illustrates LEAF-as-Sigmoid.

Figure 7. Randomly sampled LEAF-as-Tanh instances

Figure 8. Randomly sampled LEAF-as-Sigmoid instances

C. LEAF-AS-RELU TRAINING STABILITY
While working on the experiment, we discovered the posi-
tive impact of the reduced learning rates on LEAF stability.
With the regular learning rates, LEAF-as-ReLU shows se-
rious convergence issues with ADAM and shows inferior
performance with RMSprop. As mentioned in Section IV,
we use reduced learning rates for LEAF parameters ρ2 and
ρ4 (the "P24Sl" procedure) to improve the training.

Fig. 9 illustrates the convergence for different network
training procedures, including the "classic" procedure with
the same learning rate for all parameters and the "P24Sl"
procedure with reduced learning rates for ρ2 and ρ4.

Figure 9. Comparison of training procedures for LEAF in
KerasNet on CIFAR-10

VI. CONCLUSIONS
This paper introduces a learnable extended activation
(LEAF) that can change its form during training and assume
the shape of existing activation functions.

While combining the strengths of rectifier units and
squashing functions, LEAF does not suffer from the "vanish-
ing gradient" effect. It successfully operates in feed-forward
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and recurrent networks while adapting to the current data
processing task. The experiments prove the function’s ability
to adapt its form to reach lower loss values, particularly for
squashing functions in convolutional neural networks.

The proposed activation function and the corresponding
training algorithm significantly improve the data processing
quality in the image classification task over the base non-
adaptive implementations. The proposed solution is rela-
tively simple from the computational standpoint and suitable
for deep neural network architectures.
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