

352 VOLUME 22(3), 2023

Date of publication SEP-30, 2023, date of current version JUN-05, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.3.3231

Organization of FPGA-based Devices in
Distributed Systems
MYKHAILO MAIDAN1, ANATOLIY MELNYK1,2

1Department of Computer Engineering, Lviv Polytechnic National University, Lviv, 79013, Ukraine
2The John Paul II Catholic University of Lublin, Lublin, Poland

Corresponding author: Mykhailo Maidan (e-mail: mykhailo.maidan@gmail.com).

 ABSTRACT The article proposes using Kubernetes (k8s) as a tool for managing FPGA-based devices in a distributed
system. This can help automate programming, monitoring, and controlling the state of devices, and also optimize
resource usage, ensure high availability and reliability, and provide security and privacy for data processed by
specialized processors. The article provides a practical example of integrating an FPGA-based device into a Kubernetes
cluster. It will help to scale, maintain and monitor distributed systems with millions of devices and manage such big
systems from one place by using Kubernetes API. Also, it will help to integrate other third-party tools into the system,
which makes it to possible to extend the systems. As a future work, the proposed approach can help integrate FPGA
and its real-time reconfiguration tool into a distributed system, making it possible to control FPGA on different IoT
devices. Overall, using k8s to manage FPGA-based devices can provide significant advantages in such fields as
telecommunications, information technology, automation, navigation, and energy. However, the implementation may
require specialized skills and experience.

 KEYWORDS FPGA; Kubernetes; k8s; CRD; custom resource definition; distributed systems.

I. INTRODUCTION
PGAs have been proven to be effective in systems that
require specialized computing, or systems where

computing algorithms require specialized architectural
solutions. Such algorithms enable the use of multi-level
parallelism, which cannot be used in general-purpose
processors (CPUs). For such algorithms, it is better to use
specialized architectures that take into account the peculiarities
of the algorithm's structure [1-3]. Using high-level
programming languages such as C++, C, and others, and
specialized compilers, it is possible to convert an algorithm
written in a high-level programming language into
architecture-level hardware description code in the VHDL or
Verilog programming language. This will make it possible to
create a specialized processor that efficiently executes this
algorithm [4-6].

Increasingly, FPGAs are being used in Internet of Things
(IoT) devices for effective data processing at the locations
where these devices are installed. For example, in places that
are difficult for people to reach or where people do not stay
long, such as deserts or glaciers [7-8]. Such devices are part of
a larger system that is combined into one large distributed
system with many components that communicate with each
other. In such a system, there is often a component that deals
with the organization of this system since decentralization is

not always possible. However, managing FPGAs in a
distributed system can be challenging. Each FPGA has its own
programming and configuration requirements, and
coordinating multiple FPGAs in a cluster can be a complex
task. To address these challenges, Kubernetes (k8s) has
emerged as a powerful tool for managing distributed systems.
Kubernetes is an open system for the automatic deployment,
scaling, and management of applications in containers [9-10].
This system deals with the deployment and control of resources
in the system and it is also responsible for their reliability and
fault tolerance [11-13].

Organizing FPGA-based devices based on k8s means using
the k8s container management system to manage the resources
of FPGA-based devices. This management may include the
distribution of tasks between different devices, or the
optimization of the resources of specialized processors.

Using k8s allows you to easily manage and automate the
processes of organizing FPGA-based devices, which helps
ensure efficiency and reliability when working with such
devices. Also, the use of k8s allows you to automate the process
of programming, monitoring, and controlling the state of
devices. Automation of the programming process can include:

 Distribution of tasks between different devices
depending on the availability of resources and the needs
of the task.

F

Mykhailo Maidan et al. / International Journal of Computing, 22(3) 2023, 352-359

VOLUME 22(3), 2023 353

 Automation of the FPGA configuration process on such
devices using containers ensures stability and
convenience.

 FPGA status monitoring using k8s tools such as
Prometheus, Grafana, which allows you to identify and
diagnose problems with FPGA operation.

In addition, using k8s allows easy scaling of FPGA-based
device resources depending on the needs of tasks, which allows
you to optimize the use of resources and maintain high
performance, and it also allows the real-time integration of
FPGA-based devices into existing systems, for example, to
process large volumes of data in real-time, or integrate FPGA-
based devices into the architecture of distributed systems and
use the FPGA-based device to optimize the data processing
process [14].

Integrating FPGA-based devices into a distributed system
using k8s allows you to ensure efficiency and reliability when
working with them, as well as make them more accessible and
easily integrated into existing systems.

Using k8s also allows for easy lifecycle management of
FPGA-based devices. Including automated preparation and
connection of FPGAs, as well as updating and maintenance of
FPGAs, the use of k8s allows you to ensure the high availability
and reliability of a system that includes FPGA-based devices
[15].

Also, using k8s to organize FPGA-based devices can
provide security and privacy for data processed by specialized
processors. This may include control of access to FPGA
resources, as well as cryptographic protection of data that is
processed on the FPGA [16].

Using k8s to organize the operation of FPGA-based devices
can help in such fields as telecommunications, information
technology, automation, navigation, and energy.

For more complex tasks, the use of devices based on FPGA
and k8s can give a significant advantage compared to
traditional solutions, as it allows for the achievement of high
performance and speed of data processing [17].

It is important to note that implementing FPGA-based
device organization with k8s can be complex and require
specialized skills and experience, especially if your task is
complex.

In this article, we will explore how organizations can
leverage Kubernetes to manage devices based on FPGA in a
distributed system. We will discuss the benefits and challenges
of using FPGAs in distributed systems, and how Kubernetes
can help overcome these challenges. We will also provide a
practical example of deploying an FPGA-based application on
a Kubernetes cluster.

II. RELATED WORKS
Implementation of devices based on FPGA (Field
Programmable Gate Array) plays an important role in the
development and implementation of modern systems. FPGA-
based hardware organization is a critical aspect that determines
overall system performance, scalability, and reliability.

Considering the latest research, devices based on FPGA can
effectively perform tasks in the data centers of large
corporations because there is an opportunity to adapt them to
system requirements by improving performance, energy
efficiency, etc. [18]. Also, such devices can be used in big data
analysis because they have a flexible architecture that can be
changed and trained [19]. To create such devices, you need to

use a systematic approach to the design and development of
reconfigurable systems that use FPGA, it is necessary to
implement the design, development, and testing methodologies
of the system [20].

When such devices are developed, the task is to create
effective algorithms that can be parallelized and thus, ensure
the achievement of the best speed in data processing. The
development of such algorithms requires a lot of time and
research to determine the various characteristics of the
algorithm, but the implementation of such algorithms gives the
system an advantage in the speed of data processing [21-23].

Besides speed, reconfigurable hardware has many other
advantages over the microprocessor. Reconfigurable hardware
helps to reduce energy and power consumption. In a
reconfigurable system, the circuitry is optimized for the
application, such that the power consumption will tend to be
much lower than that for a general-purpose processor. A recent
study reports that moving critical software loops to
reconfigurable hardware results in average energy savings of
35% to 70% with an average acceleration of 3 to 7 times,
depending on the device used [24].

There is also an open platform to control IoT devices made
by Amazon company called AWS IoT Service. The AWS IoT
service provides cloud services that connect IoT devices to
other devices and AWS cloud services. It is also possible to use
this solution for the FPGA-based device. The AWS IoT service
provides an SDK that allows any type of device to be integrated
into its ecosystem and manipulated by that device using this
service. [25]

In summary, the organization of FPGA devices in
distributed systems is a key aspect to which researchers have
paid considerable attention in recent years. Using devices based
on FPGA in data centers and big data processing systems has
proven to be beneficial due to their ability to increase
productivity and energy efficiency. However, the
implementation of these devices in distributed systems also
arises some problems that must be solved to fully realize their
potential.

III. KUBERNETES CUSTOM RESOURCE ARCHITECTURE
Kubernetes (k8s) is one of the most popular container
management systems that allows you to automate the
deployment, scaling, and maintenance of containers. One of the
key features of k8s is the ability to create your own resources,
or "custom resources" (CRs).

Custom resources are special objects that can be created,
updated, and deleted using k8s. They can extend the
Kubernetes API by creating new types of resources that are not
part of the standard Kubernetes system resources, such as
databases, message queues, or even specialized FPGA-based
processors [26].

To create custom resources, you must first define a custom
resource (CRD - custom resource definition) in YAML format.
A custom resource definition defines the fields of the resource
as well as the constraints for that resource, as well as the rules
for checking constraints for that resource. Once the resource
has been defined, it needs to be registered in the system using
the Kubernetes API [27].

Other advantages of custom resources may be that they
allow a third party to integrate services into their own system
very quickly. For example, you can use a custom resource to
work with the database, and then use a tool like ReplicaSet or

 Mykhailo Maidan et al. / International Journal of Computing, 22(3) 2023, 352-359

354 VOLUME 22(3), 2023

Services to automatically scale and distribute the database
between clusters.

The pattern operator is a pattern design that is often used in
Kubernetes to automate and manage complex applications. It
allows engineers to delimit specific application logic into a
specialized controller that is part of a Kubernetes cluster. The
operator monitors clusters for user resources and uses the
Kubernetes API to create, update, and delete the required
resources to run the application [28].

The combination of the "operator" pattern and custom
resources allows engineers to create a custom controller that
automatically manages the application's life cycle, and also
provides a simple and convenient mechanism for interacting
with the application using the Kubernetes API.

Controllers are used for monitoring the state of system
resources. The controller works in the eternal cycle mode and
constantly monitors the state of the resource attached to it.
Since the reference state of the resource is described in the
resource, the controller constantly monitors the current state of
the resource, and if the current state of the resource does not
correspond to the reference state, the controller tries to bring
the current state of the resource to the reference state. In this
way, the system controls its reliability and fault tolerance of
itself. This process is fully automated and is shown in Fig. 1.

In general, custom controllers allow engineers to describe
algorithms for the administration and monitoring of individual
system components that are not typical for the Kubernetes API.

Figure 1. Kubernetes Operator Workflow Diagram

IV. METHODS

A. CONCEPTUAL MODEL DEVELOPMENT
To develop a conceptual model that will confirm the hypothesis
about the emergence of user resources, as well as the "operator"
pattern, it is necessary to divide and describe each component
of the system, as well as describe the role of this component in
the system.

Let us first divide the system into the following
components:

 User resource (CRD) - a component that describes an
FPGA-based device in a distributed system. Without
this FPGA-based decent module, it is impossible to play
because k8s will not understand the interface for
interacting with such resources. This element is a
resource object but only describes the structure of
objects that can be described in the system.

 The FPGA operator is a user controller whose function
is to monitor changes in the user resource (CRD) that

describes the FPGA-based device. The operator is
responsible for the connection, monitoring, and control
of the FPGA-based system in the distributed system.

 FPGA Controller - a module that is responsible for
working with FPGA. This module is not part of k8s, but
is responsible for working with the FPGA on each
device, according to which the implementation may
depend on the FPGA manufacturer.

 The central control module (Contol Plane) is
responsible for the integration of user resources with
other system components using appropriate interfaces:
APIs or the message bus, thus ensuring effective
communication.

Fig. 2 shows the structural diagram of the system
component.

Figure 2. Structural diagram of the system component

Having described the structural diagram of the system, it is
possible to divide it into functional blocks and describe the
interaction of these functional blocks with each other, as well
as describe the structure of the Kubernetes cluster, which
allows working with FPGA-based devices. Fig. 3 shows the
scheme of the interaction of system components. Fig. 4 shows
the structure of the Kubernetes cluster, which includes all
functional elements.

The cluster includes the following functional elements:
 CRD is a description of a user resource that allows the

integration of FPGA-based devices into a distributed
system. This description contains an interface through
which it will be possible to interact with resources.

 Node - microcontrollers based on ARM processors and
with a set of peripherals for communication with the
outside world: Ethernet, programmable I/O interface
(PIO) between the microcontroller and a specialized
processor based on FPGA, RAM.

 FPGA Device - synthesized processor for specialized
calculations.

 Node Custom Resource - a custom resource in the k8s
system that describes Node as objects in a distributed
system.

 8s API Server is a distributed system server, which is an
interface through which other services can
communicate with the cluster.

 ETCD is a distributed database in which k8s stores
information about the state of the cluster.

 Operator - a module for monitoring and managing the
state of the Node object in a distributed system.

Mykhailo Maidan et al. / International Journal of Computing, 22(3) 2023, 352-359

VOLUME 22(3), 2023 355

Figure 3. Schema of the interaction of system components

Figure 4. Structural diagram of a cluster with FPGA-based devices

B. OPERATOR STRUCTURE
To create an operator that describes and controls an FPGA-

based device, it is needed to include the following components:
 Device Controller presents objects that control the logic

of the controller's operation. The controller monitors
and changes the state of the device, and also responds to
requests from the outside world.

 DeviceCR is a user resource object that describes the
idle state.

 DeviceSpec is an object that describes the reference
state of the device, can change both externally and

internally, depending on the implementation of the
controller.

 DeviceStatus is an object that describes the current state
of the device. It can be changed by device monitoring
systems.

The operator is a design pattern and is only an abstraction
that describes the principle of working with a user resource in
the k8s system, and also contains the logic of responding to a
change in the state of this resource. Fig. 5 shows the structural
diagram of the operator that describes and controls the device
based on the FPGA.

 Mykhailo Maidan et al. / International Journal of Computing, 22(3) 2023, 352-359

356 VOLUME 22(3), 2023

Figure 5. Structural Diagram of the Operator

C. CRD STRUCTURE
To create and register a resource in the system, it must first

be described using the YAML language. Kubectl, which is used
as a tool for registering new resources in the system,
understands only this version of the description of resources in
the system. Such resources are described and registered in the
system once when the system starts its work.

Resources usually consist of two key characteristics: spec
and status:

 spec is a set of system attributes that define the reference
state of the device for normal operation.

 status is a set of device attributes that defines the current
state of the latter.

To create a resource, it is necessary to determine which spec
and status attributes this resource will have. To do this, it is
necessary to determine which characteristics of the FPGA
device system need to be monitored in the system.

Spec device attributes:
 deviceId is a unique device identifier in the system, most

modules that will communicate with this device will use
this identifier to designate the device as the end device
in the message chain;

 makerId is the identifier of the manufacturer of the
FPGA device, it can be Intel, Xilinx, Altera;

 frequency is reference clock frequency of the device, the
unit of measurement is hertz (Hz);

 ipCores - a reference number of logical blocks that can
be used to design a specialized processor using an
FPGA device;

 powerConsumtion - reference amount of electricity
consumed by the device for normal operation, the unit
of measurement is W;

 temperature - reference temperature of the core of the
device, unit of measurement C.

Status attributes of the device:
 deviceFrequency - the current clock frequency of the

device;
 devicePowerConsumtion - the current level of device

consumption;

 deviceTemparature - the current temperature level of the
device.

Table 1 shows an example of defining custom resources for
FPGA devices.

Table 1. Custom Resource Definition for FPGA device

Configuration Options Meaning
apiVersion:
apiextensions.k8s.io/v1

Specifies the version of the Kubernetes
API

kind:
CustomResourceDefinition

Specifies the type of Kubernetes object
we are trying to create

metadata: Contains information that helps us to
uniquely identify our Kubernetes object

name: fpga-
devices.device.com

Name of Resource

spec: Describes the specifications or
configuration details of the
CustomResourceDefinition

group: device.com Indicates the group to which the custom
resource belongs

versions: Specifies the supported versions of the
custom resource

- name: v1 Defines the name of the version. In this
case, it is v1

schema: Specifies the schema definition of the
custom resource

openAPIV3Schema: Contains the OpenAPI v3 schema
definition.

type: object Defines the type of the schema, which is
an object in this case

properties: Specifies the properties or fields of the
object

spec: Specifies the desired state of our object
type: object
properties: Specifies the properties or fields of the

object.
deviceId: Specifies the deviceId field as a string
type: string
makerId: Specifies the makerId field as a string
type: string
frequency: Specifies the frequency field as an

integer type: integer
ipCores: Specifies the ipCores field as an integer.
type: integer
powerConsumption: Specifies the powerConsumption field as

an integer. type: integer
temperature: Specifies the temperature field as a

number. type: number
replicas: Specifies the replicas field as an integer.
type: integer
status: Defines the status field of the custom

resource, which has its own set of
properties

type: object

properties: Specifies the properties or fields of the
object.

deviceFrequency: Specifies the deviceFrequency field as an
integer. Unit of measurement: hertz (Hz) type: integer

devicePowerConsumtion: Specifies the devicePowerConsumtion
field as an integer. Unit of measurement:
watt (W)

type: integer

deviceTemperature: Specifies the deviceTemperature field as
a number. Unit of measurement: Celsius
(°C)

type: integer

D. CRD INSTANCE CREATION
In order for resource objects to be registered in the system, an
object of this resource must be created for them. The controller
constantly monitors the state of the object and, using the
reference model of this resource tries to bring the current state
to the reference state. Table 2 describes how an object of the
user type should be declared using markup in the YAML style.

Mykhailo Maidan et al. / International Journal of Computing, 22(3) 2023, 352-359

VOLUME 22(3), 2023 357

Table 2. FPGA device resource declaration configuration

Configuration Options Meaning
apiVersion: "device.com/v1" Specifies the API version being used for

this resource. In this case, it indicates
that the resource follows the
"device.com" group's API version 1.

kind: FpgaDevice Defines the kind or type of the resource
being defined. Here, it specifies that the
resource is of kind "FpgaDevice".

metadata: Contains metadata about the FpgaDevice
resource.

name: xilinx-fpga Specifies the name of the FpgaDevice
resource. In this case, the name is set to
"xilinx-fpga".

spec: Describes the specification or
configuration details of the FpgaDevice
resource.

deviceId: "123123-452345-
123-345-123"

Represents the deviceId property of the
FpgaDevice resource.

makerId: "Xilinx" Represents the makerId property of the
FpgaDevice resource.

deviceFrequency: 340 Represents the working frequency
property of the FpgaDevice resource.
Unit of measurement: hertz (Hz)

ipCores: 190800 Represents the ipCores property of the
FpgaDevice resource.

powerConsumption: 10 Represents the working
powerConsumption property of the
FpgaDevice resource. Unit of
measurement: watt (W)

temperature: 65 Represents the temperature property of
the FpgaDevice resource. Unit of
measurement: Celsius (°C)

E. CONTROLLER CREATION
For the system to be able to respond to state changes, you need
to register a controller that will monitor the change and perform
the necessary actions to change the state of the devices. For
example, let us take a change in the clock frequency of the
device. If the clock frequency of the device is changed
externally, then for these changes to be implemented on the
device that uses the FPGA, the controller must send the
necessary instructions to this device. In Listing 1, we can see
an example of code that reacts to a change in the clock
frequency and changes it for the device.

 Listing 1

async fn reconcile(api: Api<FPGADevice>, name: &str) {
 let fpga_device = match api.get(name).await {
 Ok(fpga_device) => fpga_device,
 Err(e) => {
 println!("Failed to get FpgaDevice {}: {:?}",
 name, e);
 return;
 }
 };
 let patch = serde_json::to_vec(&Patch
{
 op: "replace".to_owned(),
 path: "/status/device_frequency".to_owned(),
 value:

serde_json::to_value(fpga_device.spec.frequency).unwrap(),
 })
 .unwrap();
 let res = api
 .patch(name,&PatchParams::default(),
 serde_json::to_vec(&patch).unwrap(),
)
 .await;

 if let Err(e) = res
{
 println!("Failed to patch FpgaDevice {}: {:?}", name,

e);
 }
}

F. RESULT
This section describes the results of building a conceptual
model of the integration of FPGA-based devices with
distribution using a system of modeled resources based on
Kubernetes.

To understand the number of devices registered in the
system, as well as their current statuses, you can use an
integrated environment that displays the status of the entire
cluster. Fig.6 shows an integrated environment that allows you
to monitor and control the state of resources of FPGA-based
devices in a distributed system.

Figure 6. An integrated environment for monitoring and controlling the resources of FPGA-based devices

 Mykhailo Maidan et al. / International Journal of Computing, 22(3) 2023, 352-359

358 VOLUME 22(3), 2023

These resources can be used to configure and orchestrate

non-Kubernetes components. The use of custom resources
allows you to build a resource model of component
management, where each component acts as a resource in the
system, the characteristics of which are constantly changing.

V. CONCLUSION
A system for automatic control of distributed systems is
considered, as well as the integration of FPGA-based devices
into such a system. The expediency of using k8s system user
resources for describing FPGA-based devices as k8s resources
is analyzed.

In Section IV, a conceptual model for building a distributed
system is proposed, which allows for the integration of FPGA-
based devices into the system.

This model makes it possible to ensure high fault tolerance
of the system due to the distribution of nodes. The most critical
node is the Control Plane because it performs the function of
an administrator. Such a node is usually maintained with
several copies in the system to ensure system fault tolerance. If
nodes stop working, it will not affect the operation of other
components.

The provided model also allows for system extensibility.
Since the system is distributed, the limit of system expansion is
determined only by the performance of the Control Plane and
its characteristics. At the same time, the poor characteristics of
the Control Plane do not indicate that the system cannot be
scaled, but only indicate that the response time of the system
will be longer.

Compared to other possible solutions such as AWS IoT
Service, an approach using K8S CRD gives the next advantages
and novelty:

 Flexibility - k8s has an extensive ecosystem that allows
integrating any type of device with different varieties of
hardware resources.

 Integration - k8s is a highly extensible and modular
platform, allowing integration of third-party software
and tools for controlling and monitoring devices based
on FPGA. Kubernetes provides a flexible framework
that supports the plugging in of various components and
extensions to enhance its functionality.

 Provider Agnostic - k8s is an open solution and is
agnostic to any hardware/cloud provider and can be
running on different clouds. AWS IoT is fully integrated
with the AWS ecosystem and cannot work without it.

 Communication channel - k8s allows using a
communication channel defined by the k8s API,
because AWS uses another one (MQTT, LWM2M,
etc.), which makes it more maintainable. Such
communication is provided by K8S and does not need
to be configured.

In summary, using AWS IoT for FPGA devices provides a
comprehensive, managed solution with built-in device
management capabilities and tight integration with the wider
AWS ecosystem. It offers convenience and ease of use,
especially if you plan to use other AWS Services. On the other
hand, using Kubernetes CRDs provides more flexibility and
control over the management and behavior of FPGA devices in
a Kubernetes environment. This approach requires more effort
to create and maintain the custom infrastructure and controllers

but offers extensive customization options and benefits from
the rich Kubernetes ecosystem.

In future studies, it is necessary to thoroughly investigate
the fault tolerance of the system, as well as its scaling limit. It
is necessary to conduct a study of the response time of nodes
under high load, as well as the possibility of the system working
in real-time.

References

[1] W. Wolf, FPGA-Based System Design, Prentice-Hall PTR, USA, 2004,
576 p.

[2] P. Käsgen, M. Messelka and M. Weinhardt, “HiPReP: High-performance
reconfigurable processor – Architecture and compiler,” Proceedings of
the 2021 IEEE 31st International Conference on Field-Programmable
Logic and Applications (FPL), Dresden, Germany, 2021, pp. 380-381,
https://doi.org/10.1109/fpl53798.2021.00074

[3] C. Zhao, C. Xiao and Y. Liu, “A real-time reconfigurable edge computing
system in industrial Internet of Things based on FPGA," Proceedings of
the 2021 IEEE 16th Conference on Industrial Electronics and
Applications (ICIEA), Chengdu, China, 2021, pp. 480-485.
https://doi.org/10.1109/iciea51954.2021.9516225

[4] A. Melnyk and V. Melnyk, “Remote synthesis of computer devices for
FPGA-based IoT nodes,” Proceedings of the 2020 IEEE 10th
International Conference on Advanced Computer Information
Technologies (ACIT), Deggendorf, Germany, 2020, pp. 254-259,
https://doi.org/10.1109/acit49673.2020.9208882

[5] A. Melnyk and V. Melnyk, “Specialized processors automatic design
tools – The basis of self-configurable computer and cyber-physical
systems,” Proceedings of the 2019 IEEE International Conference on
Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 2019, pp.
326-331. https://doi.org/10.1109/atit49449.2019.9030481

[6] A. Melnyk, V. Melnyk and A. Kit, “UNIX-like operating system
extension for real-time FPGA-based SCCS support,” Proceedings of the
2017 9th IEEE International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications
(IDAACS), Bucharest, Romania, 2017, pp. 20-25,
https://doi.org/10.1109/idaacs.2017.8095042

[7] F. P. Mahimai Don Bosco, E. Chitra, and S. Ryan Ebenezer, “A survey
of low-latency IoT system using FPGA accelerator,” Journal of Physics:
Conference Series, vol. 1964, no. 6, p. 062014, 2021,
https://doi.org/10.1088/1742-6596/1964/6/062014

[8] A. Shrivastava, D. Haripriya, Y. D. Borole, A. Nanoty, C. Singh, and D.
Chauhan, “High performance FPGA based secured hardware model for
IoT devices,” International Journal of System Assurance Engineering
and Management, vol. 13, no. S1, pp. 736–741, 2022,
https://doi.org/10.1007/s13198-021-01605-x

[9] “Overview,” Kubernetes. [Online]. Available at:
https://kubernetes.io/docs/concepts/overview/

[10] V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U. Arronategui, and O.
F. Rana, “Characterising resource management performance in
Kubernetes,” Computers & Electrical Engineering, vol. 68, pp. 286–297,
2018, https://doi.org/10.1016/j.compeleceng.2018.03.041

[11] Z. Kang, K. An, A. Gokhale and P. Pazandak, “A comprehensive
performance evaluation of different Kubernetes CNI plugins for edge-
based and containerized publish/subscribe applications,” Proceedings of
the 2021 IEEE International Conference on Cloud Engineering (IC2E),
San Francisco, CA, USA, 2021, pp. 31-42,
https://doi.org/10.1109/ic2e52221.2021.00017

[12] J. Bartlett, “Getting started with Kubernetes,” Cloud Native Applications
with Docker and Kubernetes, pp. 53–60, 2022, [Online]. Available at:
https://doi.org/10.1007/978-1-4842-8876-4_6

[13] N. Sabharwal and S. Kasiviswanathan, “Submit, orchestrate, and monitor
jobs on a Kubernetes cluster,” Workload Automation Using HWA, pp.
139–144, 2022, https://doi.org/10.1007/978-1-4842-8885-6_9

[14] R. Levensalor, “Give your edge an adrenaline boost: Using Kubernetes
to orchestrate FPGAs and GPU,” CableLabs, Jan. 28, 2020. [Online].
Available at: https://www.cablelabs.com/blog/edge-adrenaline-boost-
kubernetes-orchestrate-fpgas-gpu

[15] V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U. Arronategui, and O.
F. Rana, “Characterising resource management performance in
Kubernetes,” Computers & Electrical Engineering, vol. 68, pp. 286–297,
2018, https://doi.org/10.1016/j.compeleceng.2018.03.041

[16] “Overview of Cloud Native Security,” Kubernetes. [Online]. Available
at: https://kubernetes.io/docs/concepts/security/overview/

Mykhailo Maidan et al. / International Journal of Computing, 22(3) 2023, 352-359

VOLUME 22(3), 2023 359

[17] X. Long, B. Liu, F. Jiang, Q. Zhang, and X. Zhi, “FPGA virtualization
deployment based on Docker container technology,” Proceedings of the
2020 IEEE 5th International Conference on Mechanical, Control and
Computer Engineering (ICMCCE), Harbin, China, 2020, pp. 473-476,
https://doi.org/10.1109/icmcce51767.2020.00109

[18] C. Bobda et al., “The future of FPGA acceleration in datacenters and the
cloud,” ACM Transactions on Reconfigurable Technology and Systems,
vol. 15, no. 3, pp. 1–42, 2022, https://doi.org/10.1145/3506713

[19] J. Hoozemans, J. Peltenburg, F. Nonnemacher, A. Hadnagy, Z. Al-Ars,
and H. P. Hofstee, “FPGA acceleration for big data analytics: Challenges
and opportunities,” IEEE Circuits and Systems Magazine, vol. 21, no. 2,
pp. 30–47, 2021, https://doi.org/10.1109/mcas.2021.3071608

[20] V. Laxmi, C. S. Adiga, and S. V. Harish, “FPGA based reconfigurable
computing systems: A new design approach – A review,” Advanced
Materials Research, vol. 403–408, pp. 4272–4278, 2011,
https://doi.org/10.4028/www.scientific.net/amr.403-408.4272

[21] G. Stitt, F. Vahid, and S. Nematbakhsh, “Energy savings and speedups
from partitioning critical software loops to hardware in embedded
systems,” ACM Transactions on Embedded Computing Systems, vol. 3,
no. 1, pp. 218–232, 2004, https://doi.org/10.1145/972627.972637

[22] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A MapReduce
framework on OpenCL-based FPGAs,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 12, pp. 3547–3560, 2016,
https://doi.org/10.1109/tpds.2016.2537805

[23] I. Bravo, P. Jiménez, M. Mazo, J. L. Lázaro, and E. Martín, “Architecture
based on FPGA’s for real-time image processing,” Reconfigurable
Computing: Architectures and Applications, 2006, pp. 152–157,
https://doi.org/10.1007/11802839_21

[24] W. Chen et al., “FPGA-based parallel implementation of SURF
algorithm,” Proceedings of the 2016 IEEE 22nd International
Conference on Parallel and Distributed Systems (ICPADS), Wuhan,
China, 2016, pp. 308-315, https://doi.org/10.1109/icpads.2016.0049

[25] “What is AWS IoT? - AWS IoT Core. [Online]. Available at:
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-
iot.html

[26] “Custom Resources,” Kubernetes. [Online]. Available at:
https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/

[27] “Extend the Kubernetes API with CustomResourceDefinitions,”
Kubernetes. [Online]. Available at:
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-
resources/custom-resource-definitions/

[28] “Operator pattern,” Kubernetes. [Online]. Available at:
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

MYKHAILO MAIDAN is a PhD
student in Computer Engineering
Department at Lviv Polytechnic
National University. Graduated from
Lviv Polytechnic National University
with the engineer degree in
computer engineering in 2018.
Working as an assistant and lecturer
in Computer Engineering
Department at Lviv Polytechnic
National University. Participated in
developing software for Wind

Turbine industry, Charging station Software for USA customer.
From 2017 working as Software Engineer with main technologies
Embedded System and programming languages C/C++/Rust.

ANATOLIY O. MELNYK has been a Head
of the Department of Computer
Engineering at Lviv Polytechnic National
University since 1994 and a Head of the
Department of Artificial Intelligence of
John Paul II Catholic University of Lublin
since 2018. He graduated from Lviv
Polytechnic Institute with Engineer
Degree in Computer Engineering in 1978.
In 1985 he obtained his PhD degree in
Computer Systems from Moscow Power
Engineering Institute. In 1992, he received
his DSc degree from the Institute of

Modeling Problems in Power Engineering of the National Academy
of Science of Ukraine. He was recognized for his outstanding
contributions to high-performance computer systems design as a
Fellow Scientific Researcher in 1988. He became a Professor of
Computer Engineering in 1996. From 1982 to 1994 he was a Head
of the Department of Signal Processing Systems at Lviv Radio
Engineering Research Institute. From 1994 to 2008 he was a
Scientific Director of the Institute of Measurement and Computer
Technique at Lviv Polytechnic National University. From 1999 to
2009 he was a Dean of the Department of Computer and
Information Technologies at the Institute of Business and
Perspective Technologies. Since 2000 he has served as President
and CEO of Intron ltd. He was also a professor at the Kielce
University of Technology, Rzeszow University of Information
Technology and Management, a visiting professor at University of
Bielsko-Biala.

