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 ABSTRACT The article proposes using Kubernetes (k8s) as a tool for managing FPGA-based devices in a distributed 
system. This can help automate programming, monitoring, and controlling the state of devices, and also optimize 
resource usage, ensure high availability and reliability, and provide security and privacy for data processed by 
specialized processors. The article provides a practical example of integrating an FPGA-based device into a Kubernetes 
cluster. It will help to scale, maintain and monitor distributed systems with millions of devices and manage such big 
systems from one place by using Kubernetes API. Also, it will help to integrate other third-party tools into the system, 
which makes it to possible to extend the systems. As a future work, the proposed approach can help integrate FPGA 
and its real-time reconfiguration tool into a distributed system, making it possible to control FPGA on different IoT 
devices. Overall, using k8s to manage FPGA-based devices can provide significant advantages in such fields as 
telecommunications, information technology, automation, navigation, and energy. However, the implementation may 
require specialized skills and experience. 
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I. INTRODUCTION 
PGAs have been proven to be effective in systems that 
require specialized computing, or systems where 

computing algorithms require specialized architectural 
solutions. Such algorithms enable the use of multi-level 
parallelism, which cannot be used in general-purpose 
processors (CPUs). For such algorithms, it is better to use 
specialized architectures that take into account the peculiarities 
of the algorithm's structure [1-3]. Using high-level 
programming languages such as C++, C, and others, and 
specialized compilers, it is possible to convert an algorithm 
written in a high-level programming language into 
architecture-level hardware description code in the VHDL or 
Verilog programming language. This will make it possible to 
create a specialized processor that efficiently executes this 
algorithm [4-6]. 

Increasingly, FPGAs are being used in Internet of Things 
(IoT) devices for effective data processing at the locations 
where these devices are installed. For example, in places that 
are difficult for people to reach or where people do not stay 
long, such as deserts or glaciers [7-8]. Such devices are part of 
a larger system that is combined into one large distributed 
system with many components that communicate with each 
other. In such a system, there is often a component that deals 
with the organization of this system since decentralization is 

not always possible.  However, managing FPGAs in a 
distributed system can be challenging. Each FPGA has its own 
programming and configuration requirements, and 
coordinating multiple FPGAs in a cluster can be a complex 
task. To address these challenges, Kubernetes (k8s) has 
emerged as a powerful tool for managing distributed systems. 
Kubernetes is an open system for the automatic deployment, 
scaling, and management of applications in containers [9-10]. 
This system deals with the deployment and control of resources 
in the system and it is also responsible for their reliability and 
fault tolerance [11-13]. 

Organizing FPGA-based devices based on k8s means using 
the k8s container management system to manage the resources 
of FPGA-based devices. This management may include the 
distribution of tasks between different devices, or the 
optimization of the resources of specialized processors. 

Using k8s allows you to easily manage and automate the 
processes of organizing FPGA-based devices, which helps 
ensure efficiency and reliability when working with such 
devices. Also, the use of k8s allows you to automate the process 
of programming, monitoring, and controlling the state of 
devices. Automation of the programming process can include: 

 Distribution of tasks between different devices 
depending on the availability of resources and the needs 
of the task. 

F
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 Automation of the FPGA configuration process on such 
devices using containers ensures stability and 
convenience. 

 FPGA status monitoring using k8s tools such as 
Prometheus, Grafana, which allows you to identify and 
diagnose problems with FPGA operation. 

In addition, using k8s allows easy scaling of FPGA-based 
device resources depending on the needs of tasks, which allows 
you to optimize the use of resources and maintain high 
performance, and it also allows the real-time integration of 
FPGA-based devices into existing systems, for example, to 
process large volumes of data in real-time, or integrate FPGA-
based devices into the architecture of distributed systems and 
use the FPGA-based device to optimize the data processing 
process [14]. 

Integrating FPGA-based devices into a distributed system 
using k8s allows you to ensure efficiency and reliability when 
working with them, as well as make them more accessible and 
easily integrated into existing systems. 

Using k8s also allows for easy lifecycle management of 
FPGA-based devices. Including automated preparation and 
connection of FPGAs, as well as updating and maintenance of 
FPGAs, the use of k8s allows you to ensure the high availability 
and reliability of a system that includes FPGA-based devices 
[15]. 

Also, using k8s to organize FPGA-based devices can 
provide security and privacy for data processed by specialized 
processors. This may include control of access to FPGA 
resources, as well as cryptographic protection of data that is 
processed on the FPGA [16]. 

Using k8s to organize the operation of FPGA-based devices 
can help in such fields as telecommunications, information 
technology, automation, navigation, and energy. 

For more complex tasks, the use of devices based on FPGA 
and k8s can give a significant advantage compared to 
traditional solutions, as it allows for the achievement of high 
performance and speed of data processing [17]. 

It is important to note that implementing FPGA-based 
device organization with k8s can be complex and require 
specialized skills and experience, especially if your task is 
complex. 

In this article, we will explore how organizations can 
leverage Kubernetes to manage devices based on FPGA in a 
distributed system. We will discuss the benefits and challenges 
of using FPGAs in distributed systems, and how Kubernetes 
can help overcome these challenges. We will also provide a 
practical example of deploying an FPGA-based application on 
a Kubernetes cluster. 

II. RELATED WORKS 
Implementation of devices based on FPGA (Field 
Programmable Gate Array) plays an important role in the 
development and implementation of modern systems. FPGA-
based hardware organization is a critical aspect that determines 
overall system performance, scalability, and reliability. 

Considering the latest research, devices based on FPGA can 
effectively perform tasks in the data centers of large 
corporations because there is an opportunity to adapt them to 
system requirements by improving performance, energy 
efficiency, etc. [18]. Also, such devices can be used in big data 
analysis because they have a flexible architecture that can be 
changed and trained [19]. To create such devices, you need to 

use a systematic approach to the design and development of 
reconfigurable systems that use FPGA, it is necessary to 
implement the design, development, and testing methodologies 
of the system [20]. 

When such devices are developed, the task is to create 
effective algorithms that can be parallelized and thus, ensure 
the achievement of the best speed in data processing. The 
development of such algorithms requires a lot of time and 
research to determine the various characteristics of the 
algorithm, but the implementation of such algorithms gives the 
system an advantage in the speed of data processing [21-23]. 

Besides speed, reconfigurable hardware has many other 
advantages over the microprocessor. Reconfigurable hardware 
helps to reduce energy and power consumption. In a 
reconfigurable system, the circuitry is optimized for the 
application, such that the power consumption will tend to be 
much lower than that for a general-purpose processor. A recent 
study reports that moving critical software loops to 
reconfigurable hardware results in average energy savings of 
35% to 70% with an average acceleration of 3 to 7 times, 
depending on the device used [24]. 

There is also an open platform to control IoT devices made 
by Amazon company called AWS IoT Service. The AWS IoT 
service provides cloud services that connect IoT devices to 
other devices and AWS cloud services. It is also possible to use 
this solution for the FPGA-based device. The AWS IoT service 
provides an SDK that allows any type of device to be integrated 
into its ecosystem and manipulated by that device using this 
service. [25] 

In summary, the organization of FPGA devices in 
distributed systems is a key aspect to which researchers have 
paid considerable attention in recent years. Using devices based 
on FPGA in data centers and big data processing systems has 
proven to be beneficial due to their ability to increase 
productivity and energy efficiency. However, the 
implementation of these devices in distributed systems also 
arises some problems that must be solved to fully realize their 
potential. 

III. KUBERNETES  CUSTOM  RESOURCE ARCHITECTURE 
Kubernetes (k8s) is one of the most popular container 
management systems that allows you to automate the 
deployment, scaling, and maintenance of containers. One of the 
key features of k8s is the ability to create your own resources, 
or "custom resources" (CRs). 

Custom resources are special objects that can be created, 
updated, and deleted using k8s. They can extend the 
Kubernetes API by creating new types of resources that are not 
part of the standard Kubernetes system resources, such as 
databases, message queues, or even specialized FPGA-based 
processors [26]. 

To create custom resources, you must first define a custom 
resource (CRD - custom resource definition) in YAML format. 
A custom resource definition defines the fields of the resource 
as well as the constraints for that resource, as well as the rules 
for checking constraints for that resource. Once the resource 
has been defined, it needs to be registered in the system using 
the Kubernetes API [27]. 

Other advantages of custom resources may be that they 
allow a third party to integrate services into their own system 
very quickly. For example, you can use a custom resource to 
work with the database, and then use a tool like ReplicaSet or 
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Services to automatically scale and distribute the database 
between clusters. 

The pattern operator is a pattern design that is often used in 
Kubernetes to automate and manage complex applications. It 
allows engineers to delimit specific application logic into a 
specialized controller that is part of a Kubernetes cluster. The 
operator monitors clusters for user resources and uses the 
Kubernetes API to create, update, and delete the required 
resources to run the application [28]. 

The combination of the "operator" pattern and custom 
resources allows engineers to create a custom controller that 
automatically manages the application's life cycle, and also 
provides a simple and convenient mechanism for interacting 
with the application using the Kubernetes API. 

Controllers are used for monitoring the state of system 
resources. The controller works in the eternal cycle mode and 
constantly monitors the state of the resource attached to it. 
Since the reference state of the resource is described in the 
resource, the controller constantly monitors the current state of 
the resource, and if the current state of the resource does not 
correspond to the reference state, the controller tries to bring 
the current state of the resource to the reference state. In this 
way, the system controls its reliability and fault tolerance of 
itself. This process is fully automated and is shown in Fig. 1. 

In general, custom controllers allow engineers to describe 
algorithms for the administration and monitoring of individual 
system components that are not typical for the Kubernetes API. 
 

 

Figure 1. Kubernetes Operator Workflow Diagram 

IV. METHODS  

A. CONCEPTUAL MODEL DEVELOPMENT 
To develop a conceptual model that will confirm the hypothesis 
about the emergence of user resources, as well as the "operator" 
pattern, it is necessary to divide and describe each component 
of the system, as well as describe the role of this component in 
the system. 

Let us first divide the system into the following 
components: 

 User resource (CRD) - a component that describes an 
FPGA-based device in a distributed system. Without 
this FPGA-based decent module, it is impossible to play 
because k8s will not understand the interface for 
interacting with such resources. This element is a 
resource object but only describes the structure of 
objects that can be described in the system. 

 The FPGA operator is a user controller whose function 
is to monitor changes in the user resource ( CRD ) that 

describes the FPGA-based device. The operator is 
responsible for the connection, monitoring, and control 
of the FPGA-based system in the distributed system. 

 FPGA Controller - a module that is responsible for 
working with FPGA. This module is not part of k8s, but 
is responsible for working with the FPGA on each 
device, according to which the implementation may 
depend on the FPGA manufacturer.  

 The central control module (Contol Plane) is 
responsible for the integration of user resources with 
other system components using appropriate interfaces: 
APIs or the message bus, thus ensuring effective 
communication. 

Fig. 2 shows the structural diagram of the system 
component. 

 

Figure 2. Structural diagram of the system component 

Having described the structural diagram of the system, it is 
possible to divide it into functional blocks and describe the 
interaction of these functional blocks with each other, as well 
as describe the structure of the Kubernetes cluster, which 
allows working with FPGA-based devices. Fig. 3 shows the 
scheme of the interaction of system components. Fig. 4 shows 
the structure of the Kubernetes cluster, which includes all 
functional elements. 

The cluster includes the following functional elements: 
 CRD is a description of a user resource that allows the 

integration of FPGA-based devices into a distributed 
system. This description contains an interface through 
which it will be possible to interact with resources. 

 Node - microcontrollers based on ARM processors and 
with a set of peripherals for communication with the 
outside world: Ethernet, programmable I/O interface 
(PIO) between the microcontroller and a specialized 
processor based on FPGA, RAM. 

 FPGA Device - synthesized processor for specialized 
calculations. 

 Node Custom Resource - a custom resource in the k8s 
system that describes Node as objects in a distributed 
system. 

 8s API Server is a distributed system server, which is an 
interface through which other services can 
communicate with the cluster. 

 ETCD is a distributed database in which k8s stores 
information about the state of the cluster. 

 Operator - a module for monitoring and managing the 
state of the Node object in a distributed system. 
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Figure 3. Schema of the interaction of system components 

 

 

Figure 4. Structural diagram of a cluster with FPGA-based devices 

 

B. OPERATOR STRUCTURE 
To create an operator that describes and controls an FPGA-

based device, it is needed to include the following components: 
 Device Controller presents objects that control the logic 

of the controller's operation. The controller monitors 
and changes the state of the device, and also responds to 
requests from the outside world. 

 DeviceCR is a user resource object that describes the 
idle state. 

 DeviceSpec is an object that describes the reference 
state of the device, can change both externally and 

internally, depending on the implementation of the 
controller. 

 DeviceStatus is an object that describes the current state 
of the device. It can be changed by device monitoring 
systems. 

The operator is a design pattern and is only an abstraction 
that describes the principle of working with a user resource in 
the k8s system, and also contains the logic of responding to a 
change in the state of this resource. Fig. 5 shows the structural 
diagram of the operator that describes and controls the device 
based on the FPGA. 
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Figure 5. Structural Diagram of the Operator 

C. CRD STRUCTURE 
To create and register a resource in the system, it must first 

be described using the YAML language. Kubectl, which is used 
as a tool for registering new resources in the system, 
understands only this version of the description of resources in 
the system. Such resources are described and registered in the 
system once when the system starts its work. 

Resources usually consist of two key characteristics: spec 
and status: 

 spec is a set of system attributes that define the reference 
state of the device for normal operation. 

 status is a set of device attributes that defines the current 
state of the latter. 

To create a resource, it is necessary to determine which spec 
and status attributes this resource will have. To do this, it is 
necessary to determine which characteristics of the FPGA 
device system need to be monitored in the system. 

Spec device attributes: 
 deviceId is a unique device identifier in the system, most 

modules that will communicate with this device will use 
this identifier to designate the device as the end device 
in the message chain; 

 makerId  is  the identifier of the manufacturer of the 
FPGA device, it can be Intel, Xilinx, Altera; 

 frequency is reference clock frequency of the device, the 
unit of measurement is hertz (Hz); 

 ipCores - a reference number of logical blocks that can 
be used to design a specialized processor using an 
FPGA device; 

 powerConsumtion - reference amount of electricity 
consumed by the device for normal operation, the unit 
of measurement is W; 

 temperature - reference temperature of the core of the 
device, unit of measurement C. 

Status attributes of the device: 
 deviceFrequency - the current clock frequency of the 

device; 
 devicePowerConsumtion - the current level of device 

consumption; 

 deviceTemparature - the current temperature level of the 
device. 

Table 1 shows an example of defining custom resources   for 
FPGA devices. 

Table 1. Custom Resource Definition for FPGA device 

Configuration Options Meaning 
apiVersion: 
apiextensions.k8s.io/v1 

Specifies the version of the Kubernetes 
API 

kind: 
CustomResourceDefinition 

Specifies the type of Kubernetes object 
we are trying to create 

metadata: Contains information that helps us to 
uniquely identify our Kubernetes object 

name: fpga-
devices.device.com 

Name of Resource 

spec: Describes the specifications or 
configuration details of the 
CustomResourceDefinition 

group: device.com Indicates the group to which the custom 
resource belongs 

versions: Specifies the supported versions of the 
custom resource 

- name: v1 Defines the name of the version. In this 
case, it is v1 

schema: Specifies the schema definition of the 
custom resource 

openAPIV3Schema: Contains the OpenAPI v3 schema 
definition. 

type: object Defines the type of the schema, which is 
an object in this case 

properties: Specifies the properties or fields of the 
object 

spec: Specifies the desired state of our object 
type: object 
properties: Specifies the properties or fields of the 

object. 
deviceId: Specifies the deviceId field as a string 
type: string 
makerId: Specifies the makerId field as a string 
type: string 
frequency: Specifies the frequency field as an 

integer type: integer 
ipCores: Specifies the ipCores field as an integer. 
type: integer 
powerConsumption: Specifies the powerConsumption field as 

an integer. type: integer 
temperature: Specifies the temperature field as a 

number. type: number 
replicas: Specifies the replicas field as an integer. 
type: integer 
status: Defines the status field of the custom 

resource, which has its own set of 
properties 

type: object 

properties: Specifies the properties or fields of the 
object. 

deviceFrequency: Specifies the deviceFrequency field as an 
integer. Unit of measurement: hertz (Hz) type: integer 

devicePowerConsumtion: Specifies the devicePowerConsumtion 
field as an integer. Unit of measurement: 
watt (W) 

type: integer 

deviceTemperature: Specifies the deviceTemperature field as 
a number. Unit of measurement: Celsius 
(°C) 

type: integer 

D. CRD INSTANCE CREATION 
In order for resource objects to be registered in the system, an 
object of this resource must be created for them. The controller 
constantly monitors the state of the object and, using the 
reference model of this resource tries to bring the current state 
to the reference state. Table 2 describes how an object of the 
user type should be declared using markup in the YAML style. 
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Table 2. FPGA device resource declaration configuration 

Configuration Options Meaning 
apiVersion: "device.com/v1" Specifies the API version being used for 

this resource. In this case, it indicates 
that the resource follows the 
"device.com" group's API version 1. 

kind: FpgaDevice Defines the kind or type of the resource 
being defined. Here, it specifies that the 
resource is of kind "FpgaDevice". 

metadata: Contains metadata about the FpgaDevice 
resource. 

name: xilinx-fpga Specifies the name of the FpgaDevice 
resource. In this case, the name is set to 
"xilinx-fpga". 

spec: Describes the specification or 
configuration details of the FpgaDevice 
resource. 

deviceId: "123123-452345-
123-345-123" 

Represents the deviceId property of the 
FpgaDevice resource. 

makerId: "Xilinx" Represents the makerId property of the 
FpgaDevice resource. 

deviceFrequency: 340 Represents the working frequency 
property of the FpgaDevice resource. 
Unit of measurement: hertz (Hz) 

ipCores: 190800 Represents the ipCores property of the 
FpgaDevice resource. 

powerConsumption: 10 Represents the working 
powerConsumption property of the 
FpgaDevice resource. Unit of 
measurement: watt (W) 

temperature: 65 Represents the temperature property of 
the FpgaDevice resource. Unit of 
measurement: Celsius (°C) 

E. CONTROLLER CREATION 
For the system to be able to respond to state changes, you need 
to register a controller that will monitor the change and perform 
the necessary actions to change the state of the devices. For 
example, let us take a change in the clock frequency of the 
device. If the clock frequency of the device is changed 
externally, then for these changes to be implemented on the 
device that uses the FPGA, the controller must send the 
necessary instructions to this device. In Listing 1, we can see 
an example of code that reacts to a change in the clock 
frequency and changes it for the device.

         Listing 1 

async fn reconcile(api: Api<FPGADevice>, name: &str) { 
    let fpga_device = match api.get(name).await { 
        Ok(fpga_device) => fpga_device, 
        Err(e) => { 
            println!("Failed to get FpgaDevice {}: {:?}", 
                          name, e); 
            return; 
        } 
    }; 
    let patch = serde_json::to_vec(&Patch  
{ 
        op: "replace".to_owned(), 
        path: "/status/device_frequency".to_owned(), 
        value: 

serde_json::to_value(fpga_device.spec.frequency).unwrap(), 
    }) 
    .unwrap(); 
    let res = api 
        .patch(name,&PatchParams::default(), 
            serde_json::to_vec(&patch).unwrap(), 
        ) 
        .await; 
    
 if let Err(e) = res  
{ 
        println!("Failed to patch FpgaDevice {}: {:?}", name, 

e); 
    } 
} 

F. RESULT 
This section describes the results of building a conceptual 
model of the integration of FPGA-based devices with 
distribution using a system of modeled resources based on 
Kubernetes. 

To understand the number of devices registered in the 
system, as well as their current statuses, you can use an 
integrated environment that displays the status of the entire 
cluster. Fig.6 shows an integrated environment that allows you 
to monitor and control the state of resources of FPGA-based 
devices in a distributed system. 

 

Figure 6. An integrated environment for monitoring and controlling the resources of FPGA-based devices 
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These resources can be used to configure and orchestrate 

non-Kubernetes components. The use of custom resources 
allows you to build a resource model of component 
management, where each component acts as a resource in the 
system, the characteristics of which are constantly changing. 

V. CONCLUSION 
A system for automatic control of distributed systems is 
considered, as well as the integration of FPGA-based devices 
into such a system. The expediency of using k8s system user 
resources for describing FPGA-based devices as k8s resources 
is analyzed. 

In Section IV, a conceptual model for building a distributed 
system is proposed, which allows for the integration of FPGA-
based devices into the system.  

This model makes it possible to ensure high fault tolerance 
of the system due to the distribution of nodes. The most critical 
node is the Control Plane because it performs the function of 
an administrator. Such a node is usually maintained with 
several copies in the system to ensure system fault tolerance. If 
nodes stop working, it will not affect the operation of other 
components. 

The provided model also allows for system extensibility. 
Since the system is distributed, the limit of system expansion is 
determined only by the performance of the Control Plane and 
its characteristics. At the same time, the poor characteristics of 
the Control Plane do not indicate that the system cannot be 
scaled, but only indicate that the response time of the system 
will be longer. 

Compared to other possible solutions such as AWS IoT 
Service, an approach using K8S CRD gives the next advantages 
and novelty: 

 Flexibility - k8s has an extensive ecosystem that allows 
integrating any type of device with different varieties of 
hardware resources. 

 Integration - k8s is a highly extensible and modular 
platform, allowing integration of third-party software 
and tools for controlling and monitoring devices based 
on FPGA. Kubernetes provides a flexible framework 
that supports the plugging in of various components and 
extensions to enhance its functionality. 

 Provider Agnostic - k8s is an open solution and is 
agnostic to any hardware/cloud provider and can be 
running on different clouds. AWS IoT is fully integrated 
with the AWS ecosystem and cannot work without it.  

 Communication channel - k8s allows using a 
communication channel defined by the k8s API, 
because AWS uses another one (MQTT, LWM2M, 
etc.), which makes it more maintainable. Such 
communication is provided by K8S and does not need 
to be configured. 

In summary, using AWS IoT for FPGA devices provides a 
comprehensive, managed solution with built-in device 
management capabilities and tight integration with the wider 
AWS ecosystem. It offers convenience and ease of use, 
especially if you plan to use other AWS Services. On the other 
hand, using Kubernetes CRDs provides more flexibility and 
control over the management and behavior of FPGA devices in 
a Kubernetes environment. This approach requires more effort 
to create and maintain the custom infrastructure and controllers 

but offers extensive customization options and benefits from 
the rich Kubernetes ecosystem. 

In future studies, it is necessary to thoroughly investigate 
the fault tolerance of the system, as well as its scaling limit. It 
is necessary to conduct a study of the response time of nodes 
under high load, as well as the possibility of the system working 
in real-time. 
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