
 

VOLUME 21(3), 2022 383 

Date of publication SEP-30, 2022, date of current version AUG-25, 2022. 
www.computingonline.net / computing@computingonline.net 

Print ISSN 1727-6209 
Online ISSN 2312-5381 
DOI 10.47839/ijc.21.3.2696 

High Speed Approximate Carry 
Speculative Adder in Error Tolerance 

Applications 
AJAY KUMAR GOTTEM1, ARUNMETHA SUNDARAMOORTHY2, ARAVINDHAN ALAGARSAMY3 

 
1,2,3 Multi-core Architecture Computation (MAC) Lab, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, Guntur District 522 502, India 

(e-mail: ajaykumar39751@gmail.com, sarunmetha@gmail.com, drarvindhan@kluniversity.in) 

Corresponding Author: Aravindhan Alagarsamy (drarvindhan@kluniversity.in) 

The authors thank DST - FIST for funding the lab facility for supporting this research under grant number SR/FST/ET-II/2019/450. 

 ABSTRACT Approximate adders were proposed as feasible solution in error-tolerant applications to provide a proper 
trade-off with accuracy over other circuit-based metrics like energy, area, and delay. State of art of approximate adders 
are shown in this work to improve the operational features significantly. To acquire a most benefits of approximation, 
in this paper approximation at lower echelons is presented. Two speculative adders are proposed, one with approximate 
adder cell and other with Parallel prefix Adder cell. Gate level implementation of proposed model are designed and 
implemented. The cost functions are compared against various FPGA standard architectures. Results of proposed 
approach indicate an average of 46% improvement in Area Delay Product (ADP) and compared with existing 
approximate adders. 
 

 KEYWORDS Approximate adder; Area delay product (ADP); Parallel prefix adder; Field programmable gate array. 
 

I. INTRODUCTION 
OWER optimization and speed enhancement are the main 
targets in the design of digital circuits. Approximate adder 

is used as a basic element in almost all arithmetic operations 
such as multiplication, subtraction, and division in digital 
circuits. These approximate adders gain significant attention in 
these recent years by the designers to implement various types 
of application where some error is tolerated [1-5]. Approximate 
adders gained importance because of high computation demand 
in the applications [6-8] such as machine learning, deep 
learning, image processing and digital signal processing (DSP) 
and wireless communication. In these applications we are 
introducing errors intentionally to get advantage of delay, area 
and power. Therefore, approximate adders have been 
implemented with significant loss since we don’t require single 
golden result for those applications, however sufficient. 
Approximate computing was done at various abstraction levels 
like dynamic-voltage-accuracy-frequency-scaling in [9-11], 
computation at algorithmic level in and redesigning of circuits 
into approximate variants by inserting prediction logic that is 
especially suited for arithmetic adders [12-14]. 

The two approximate adders, one with approximate adder 
cell and other with Han-Carlson adder is implemented [15-17]. 
The proposed approximate adder is divided into non-
overlapped summation blocks in which carry from the previous 
block is independent to the next summation block. The carry 
input from each block is dependent on the input operands itself, 
but not from the previous blocks. Carry chain propagation is 
truncated to adder block itself, in worst case carry propagated 
to next corresponding block, that reduces delay drastically. 
Approximate Adder cell (AAC) and Error Recovery Unit 
(ERU) added benefits to the proposed work that are evidently 
described in the further sections of this paper. 

This paper is structured as follows. Section II explains 
about related works. Section III highlights the two proposed 
methods and its significance. Section IV experimental results 

P



 Ajay Kumar Gottem et al. / International Journal of Computing, 21(3) 2022, 383-390 

384 VOLUME 21(3), 2022 

 

 
 

Figure 1. Implementation of block based approximate adder with carry prediction unit. 

results are validated for the proposed model. Finally, 
conclusion and future work are discussed in section V. 

II. RELATED WORKS 
In this section we will briefly discuss about existing works, 
where state of art approximate adder is implemented. The work 
in [9] represents a reconfigurable approximate carry look ahead 
(CLA) adder implementation where it acts as both approximate 
as well as exact adder. It uses exact carry look ahead adder to 
implement the design and also multiplexer are used to select 
the accuracy configurability in order to act as exact adder and 
approximate adder. This way of implementing the design will 
cause more hardware complexity and more delay. In [10], an 
approximate carry skip adder (CSA) is proposed which is 
implemented by using exact carry skip adder. Where the n-bit 
adder is clustered into l-bit sub adders in which each sub adder 
gets the carry from the carry prediction block to reduce the 
overall critical path delay. An additional, error magnitude 
correct block is implemented in view of betterment to accuracy 
and decrease the error rate. Hence by using this additional 
block will increase the critical path delay and power 
consumption of the approximate adder design. So, this affects 
the cost function of the design. 

The work in [11], a high accuracy block-based carry 
speculative adder (BCSA) is proposed, and it implemented by 
using carry propagate adder and consists of an error prediction 
unit. Although the error rate and area overhead are less, the 
main drawback of this design is large critical path delay from 
input to output. An approximate ripple carry adder (RCA) is 
proposed in [12], in which n-bit adder is clustered into sub-
blocks and there is no connection between the sub blocks. In 
every sub block the first and last full adders are replaced by the 
modified full adder to where accuracy is more with increase in 
critical path delay because of ripple carry adder in these blocks. 
In BCSA approach [11], n-bit approximate carry speculative 
adder is implemented by using sub blocks in which parallel 
operation of these sub blocks is implemented by using carry 
prediction unit. To perform n-bit addition in the BCSA method; 
the n-bit adder is clustered into l-bit summation blocks in which 
each sub blocks consists of l-bits. In the sub adder, carry 
prediction unit and selection unit is present. In each block to 
perform the parallel operation, the carry from the previous 
block does not relay with the input of the next block. Hence 

there is no path exist between these blocks. Hence each sub 
adder will get the input carry signal from its previous carry 

prediction unit. It indicates the 𝑖௧௛  sub adder will get the carry 

input from the (𝑖 − 1)௧௛ block as shown in Fig.1.  
The carry chain length depends upon the carry prediction 

unit and selector unit [18]. Hence by using these circuits will 
trims down the critical path delay, due to the carry input for the 
next sub block will depend upon these prediction blocks not 
from the previous carry output [19-21]. In conventional 
method, the carry chain length is more because the carry input 
is dependent upon the carry output of the previous block so 
above method is used to truncate carry to two blocks (in worst 
case). In BSCA [11] approximate adder, the accuracy is more 
because most of the cases it will behave as an exact adder. The 

carry input for the 𝑖௧௛ adder block is obtained from the below 
logical expression. 
 

 𝐶𝑂௜ = 𝑠𝑒𝑙పതതതതത. 𝐶஺஽஽
௜ + 𝑠𝑒𝑙௜ . 𝐶௣௥ௗ௧

௜  (1) 

where 𝐶𝑂௜ is carry output from the 𝑖௧௛ block. From the above 
logical expression sel is the output from the selector unit. The 
carry output from the sub-adder is denoted by using 𝐶஺஽஽

௜ . 

Where predicted carry value is consider as 𝐶௣௥ௗ௧
௜ . 

 

 𝑠𝑒𝑙௜ = 𝐾௞
௜ାଵ + 𝐺௟ିଵ

௜ , (2) 

 

 𝐶௣௥ௗ௧
௜ =𝐺௟ିଵ

௜ , (3) 

 𝐶஺஽஽
௜ =𝑃௟ିଵ

௜ 𝐺௟ିଶ
௜ + 𝑃௟ିଵ

௜ 𝑃௟ିଶ
௜ 𝐺௟ିଷ

௜ + ⋯ +

∏௟ିଵ
௞ୀଵ 𝑃௞

௜ 𝐺଴
௜ , 

(4) 

 

where 𝐶஺஽஽
௜  and 𝐶௣௥ௗ௧

௜  are carry outputs generated from each 

sub-block that is selected by 𝑠𝑒𝑙௜. Certain cases are 
implemented based on generate values and kill bit that we get 
from NOR operation on input data. In some of the cases have 
higher error rate that is some extent recovered by Error 
Recovery Unit (ERU). The block based approximate adder is 
proposed as shown in Fig.2. Where n bit adder is segmented 
with l-sub blocks in which each sub block consists of sub 
adders which are implemented by using ripple carry adder. An 



Ajay Kumar Gottem et al. / International Journal of Computing, 21(3) 2022, 383-390  

VOLUME 19(3), 2020 385 

error recovery block is used to improve the accuracy of the sub 
adder while decreasing the error rate of the approximate adder. 

 

 

Figure 2. Structure of approximate adder with error recovery unit 

 

 

Figure 3. Approximate adder cell 

III. PROPOSED INTERNAL ARCHITECTURE 
In this section will implement a high-speed approximate carry 
speculative adder is proposed. Fig 3 represents the design of 
approximate full adder cell. To improve the speed of the 
operation and decrease the hardware complexity two methods 
are proposed. One method is implemented by using 
approximate full adder cell that is Approximate Carry 
Speculative Adder (ACSA) as shown Fig.4. This method will 
decrease the delay and area parameters with slightly increasing 
in error rate. Second approach, instead of approximate adder 
cell, Han-Carlson adder is placed in ACSA block called 
Approximate Carry Speculative Han-Carlson Adder (ACSHA) 
as shown in Fig.7. adder is going to offer betterment in the 
critical path delay which will improve the speed of the 
operation. 
 
A.  APPROXIMATE CARRY SPECULATIVE ADDER 
(ACSA) 
In this method, approximate adder circuit is designed, in in 
existing [9-12] methods exact full adder is cascaded to 
implement the adder function. In the proposed ACSA, it 

replace the exact full adders by adopting approximate full adder 
to reduce the hardware complexity.  

The proposed approximate full adder performs the sum 
operation correctly, but we get approximate carry output, that 
can be recovered with AND and OR gates as shown in the 
Fig. 3. The logical expression is shown in eqn. (5) and (6). 

From truth table 𝐶௢௨௧ means exact carry output, 𝐶௢௨௧
ᇱ  means 

approximated carry output. Accuracy of ACSA depend on 
dimention of the approximate block and carry predict & select 
logic. Delay is reduced since carry propagation is restricted to 
block itself. So, the maximum delay of entire adder is same as 
delay of approximate adder block. In ACSA, approximate 
adder cell is used that is violating carry output only in two 

cases, when a =’0’, b =’1’  & 𝑐 ௜௡ = ’0’and a =’1’, b = ’0’ & 

𝑐 ௜௡ = ’0’ for this violation, recovery logic was placed in each 
approximate adder cell, so that  the proposed approach 
achieves-high speed and tolerable error rate. For an 8-bit ACSA 
there consist of four approximate adder cells. At the block level 
carry propagation is done through select logic which is the sum 
of kill bit (k) and generate bit (G). Where K and G values 
receives from NOR of input data as in Fig.4. 

 



 Ajay Kumar Gottem et al. / International Journal of Computing, 21(3) 2022, 383-390 

386 VOLUME 21(3), 2022 

 

Figure 4. Approximate carry speculative adder

Table 1. Truth table for ACSA 1-bit 

a b 𝒄 𝒊𝒏 sum 𝒄 𝒐𝒖𝒕 𝒄 𝒐𝒖𝒕
 ᇱ  

0 0  0 0  0 0 

0 0 1 1 0 0 

0 1 0 1 0 1 

0 1 1 0 1 1 

1 0 0 1 0 1 

1 0 1 0 1 1 

1 1 0 0 1 1 

1  1 1  1  1 1 

 
  𝑆[௟ିଵ:଴]

௜ = 𝑎[௟ିଵ:଴]
௜ ⊕ 𝑏[௟ିଵ:଴]

௜ ⊕ 𝐶 
௜ିଵ (5) 

 
        𝐶 

௜ =  𝑎[௟ିଵ:଴]
௜ + (𝑏[௟ିଵ:଴]

௜ .𝐶 
௜ିଵ) (6) 

 
B.  Approximate Carry Speculative Han-Carlson Adder 
(ACSHA) 
ACSA block implemented using parallel prefix adder. In 
ACSHA method Han Carlson adder is used which is one among 
the fastest parallel prefix adders. Hence Han-Carlson adder 
greatly trims down the critical path latency with the betterment 
of speed of operation and better accuracy. In parallel prefix 
adder, the addition operation is performed by using three 
stages: 

1. Pre-processing stage  
2. Carry generation stage 

      3. Post processing stage  
B.1 Pre-processing stage 
In this stage the propagate 𝑝௜  and generate 𝐺௜  values are 
implemented as same as carry look ahead adder. These 
propagate and generate values are estimated for each input and 
sends to next stage. 
 

𝑝௜ = 𝐴௜ ⊕ 𝐵௜  (7) 

𝐺௜ = 𝐴௜𝐵௜  (8) 

B.2 Carry generation stage 
First and last stage is same for all parallel prefix adders. The 
structure of carry generation stage is different for different 
parallel prefix adder. The carry generation stage of Han-
Carlson adder is shown Fig. 5. The stage is implemented by 
using black cells and grey cells to obtain carry for this stage 
which is shown in Fig. 6. 
 
B.3 Post processing stage 
Final sum of the adder is calculated in this stage. The Ex-Or 
operation is performed between the propagate values and 
previous stage carry values. The logical expression is shown in 
eqn. (9). 
 

 

Figure 5. Carry generation stage of Han Carlson Adder 

 

Figure 6. (a)Black cell, (b) Internal logic of Black cell and 
(c)Grey cell, (d) Internal logic of Gray cell. 



Ajay Kumar Gottem et al. / International Journal of Computing, 21(3) 2022, 383-390  

VOLUME 19(3), 2020 387 

 

Figure 7. Approximate carry speculative adder with ACSHA 
block 

In this manner the Han carlson adder is implemented and 
used in ACSHA block in place of ACSA blocks. The critical 
path is less in ACSHA block design which will improve the 
speed of the operation and has significant delay improvement. 

ACSHA block is of 8-bit length, 𝐶௣௥ௗ௧ and 𝐶஺஽஽ are generated 
and routed as mentioned in (1)-(4) select logic and predict logic 
was similar to ACSA. 

IV. RESULTS AND DISCUSSIONS 
The ACSA and ACSHA are coded with Verilog HDL, 
Simulation and Synthes is done in Xilinx ISE 14.7. In this 
section device utilization summary, performance parameters 
and error metrics evaluation is presented. Comparison analysis 
with different FPGA families is done as shown in Table.2-5. 
Simulation results shown in the Fig.8 and Fig.9. Area and delay 
reports are obtained through the average of area and delay in 
different families of  FPGA as shown in the Fig.10-11 and error 
metrics is presented in Table.5. 
 
A.  DEVICE UTILIZATION SUMMARY 
ACSA and ACSHA is implemented in Vertex4, Vertex5, 
Artix7 and Kintex7 of Xilinx FPGA families. Differentiation is 

done in four categories that is, No of slices, No of 4 input 
LUT’s, No of IO’s and bonded IO’s. Percentage improvement 
mentioned in Table.3. On an average of 21% improvement is 
observed in ACSA and ACSHA. 
 
B.  DESIGN PARAMETER EVALUATION 
According to the implementation, the outcome of the latency 
and execution time of the 32-bit studied adders are presented in 

Fig.8 and Fig.9, respectively. a[31:0], b[31:0], 𝑐 ௜௡ and y[32:0] 
are input and output values represented in decimal, remaining 
are internally generated signals. The above Fig.10 shows the 
area report of in terms of LUT's average from four different 
FPGA families. and has change compared with BCSA. Hence 
ACSA method consists of less hardware complexity nearly 
35% when compare to the existing [11] design.  
Fig.11 shows the delay report in terms of Nanoseconds between 
BCSA [11], ACSA and ACSHA. As we are reducing gate count 
and effective length of the carry path time taken to generate and 
propagation is very less. Hence ACSA and ACSHA method 
consists of less critical path delay when compared to BCSA. 
 
C.  ERROR METRICS EVALUATION 
As previously stated, the precision of the Approximate adder 

depends upon the select logic, predict logic and length of the 
block, in ACSA each block has four approximate adder cells, 
each cell is of size 2-bit. It consists of XOR gates for sum and 
OR gates for carry since carry output was violating in two cases 
so that is corrected with ERU, we are placing ERU at 
alternative bits to get more advantage from Approximation as 
shown in Fig.3. Similarly, in ACSHA blocks are replaced  
 

 

 

Figure 8. Simulation waveform of ACSA 

 

𝑆௜ = 𝑃௜ ⊕ 𝐶௜ିଵ (9) 



 Ajay Kumar Gottem et al. / International Journal of Computing, 21(3) 2022, 383-390 

388 VOLUME 21(3), 2022 

 

Figure 9. Simulation waveform of ACSHA 

 

 

Figure 10. Area Utilization and Comparison of BCSA, ACSA, and ACSHA 

 

with parallel prefix adder block, in this approximation is done 
at block level as shown in Fig.7. 

 

Fig.11. Delay Comparison of BCSA, ACSA, and ACSHA 

Here accuracy depends upon only select and predict logic. 
Error metrics for both ACSA and ACSHA were obtained by 
applying random stimuli in 65K combinations for 16-bit and 
32-bit as presented in Table.6. Results show that ACSA has low 
delay while having bit error, to improve the accuracy ERU can 
be placed at different points in approximate adder cell as 
designer’s interest (Fig.3) and ACSHA is mostly accurate with 
relatively same cost function as ACSA. 
 

                          RE = |
௦೔ି௦೔

ᇲ

௦೔
|                                           (10) 

                          NMED =
ଵ

ଶ೙
෍

௦೔ ି௦೔
ᇲ

ଶ೙

௡

௜ୀ଴
                                     (11) 

MRED =
1

|𝑛|
෎

|𝑠௜ − 𝑠௜
ᇱ|

𝑠௜

௡

௜ୀ଴

 
 
(12) 

Where 𝑠௜
ᇱ is exact result, s_i^'is approximate result, n is adder 

bit length.  

  



Ajay Kumar Gottem et al. / International Journal of Computing, 21(3) 2022, 383-390  

VOLUME 19(3), 2020 389 

Table 2 Device utilization summary of BCSA, ACS & ACSHA 

Architec-
ture Type 

Virtex4 Virtex6 Artix7 Kintex7 
# 

Sli
ces 

# 4 
input 
LUT 

# 
IOs 

# Bonded 
IOBs 

# 
Slic
es 

# 4 
input 
LUT 

# 
IOs 

# 
Bonded 

IOBs 

# 
Slices 

# 4 
input 
LUT 

# 
IOs 

# 
Bonded 
IOBs 

# 
Slices 

# 4 
input 
LUT 

# 
IOs 

# 
Bonded 
IOBs 

BSCA [11] 66 115 98 98 75 33 98 98 75 33 98 98 75 33 98 98 

ACSA 43 75 98 98 60 28 98 98 60 28 98 98 60 28 98 98 

ACSHA 57 101 98 98 60 28 98 98 78 8 98 98 78 8 98 98 

 

Table 3 Percentage improvement in device utilization summary of ACSA & ACSHA 

Architec
-ture 
Type 

Virtex4 Virtex6 Artix7 Kintex7 
# 

Sli
ces 

# 4 
input 
LUT 

# 
IOs 

# Bonded 
IOBs 

# 
Slic
es 

# 4 
input 
LUT 

# 
IOs 

# 
Bonded 

IOBs 

# 
Slices 

# 4 
input 
LUT 

# 
IOs 

# 
Bonded 
IOBs 

# 
Slices 

# 4 
input 
LUT 

# 
IOs 

# 
Bonded 
IOBs 

ACSA 35 35 0 0 20 15 0 0 20 15 0 0 20 15 0 0 

ACSHA 14 12 0 0 20 15 0 0 20 75 0 0 20 75 0 0 

 

Table 4 Performance parameters of BCSA, ACSA, ACSHA 

Architec-
ture Type 

Virtex4 Virtex6 Artix7 Kintex7 

Area Delay ADP 
Time 

(s) 
Area 

Dela
y 

ADP 
Time 

(s) 
Area 

Dela
y 

ADP 
Time 

(s) 
Area 

Dela
y 

AD
P 

Time 
(s) 

BSCA [11] 115 12.68 1460 6.00 75 4.87 365 7.15 75 6.64 498 9.84 75 4.55 341 10 

ACSA 75 7.85 589 5.83 60 3.19 191 6.76 60 4.36 262 9.28 60 2.96 178 9.14 

ACSHA 101 7.98 806 5.9 60 3.19 191 6.76 60 4.22 253 9.72 60 2.87 172 9.56 

 
 

 

Table 5 Percentage improvement in ACSA and ACSHA 

Parameter Virtex4 Virtex6 Artix7 Kintex7 

BCSA 

ACSA Area 35% 20% 20% 20% 

Delay 38% 35% 34% 35% 

ADP 60% 48% 47% 48% 

Simulat
ion time 

10% 6% 6% 9% 

ACSHA 
Area 12% 20% 20% 20% 

Delay 37% 35% 37% 35% 

ADP 45% 48% 49% 50% 

Simulat
ion time 

1.2% 6% 10% 4% 

 
Relative error (RE) normalized mean error distance 

(NMED) and mean relative error distance (MRED) is 
calculated from eqn. (10)-(12). Presented in Table.5. Results 
show that in ACSA 5.6% relative error (in 16-bit) that can be 
improved as of designer’s interest as mentioned above and in 
ACSHA almost negligible.    

Table 6 Error metrics evaluation of BCSA, ACSA & 
ACSHA 

Logic 
16 - Bit 32 - Bit 

RE NMED MRED RE NMED MRED 

BCSA 1.7 0.02 0.02 0.2 ~0 ~0 

ACSA 5.6 0.06 0.05 4.3 0.03 0.04 

ACSH 0.0 ~0 ~0 ~0 ~0 ~0 

                                       

V. CONCLUSION 
In this paper, a high-speed approximate carry speculative adder 
is proposed. To limit the critical path and improve the 
execution time, two approaches have been proposed, first 
approach to replace full adder by using approximate adder cells 
that has improved ADP and in second approach approximate 
adder cells are replaced by parallel prefix adder which greatly 
trims down the critical path latency and improved Accuracy. In 
this design, to improvise the proposed approximate adder 
accuracy, an error recovery block is adopted. From the 
experimental results, we can conclude that proposed designs 
consist of optimal area and delay when compare to existing 
approximate adders, further it can be extended to design n-bit 
parallel adders and accuracy tuned approximate Adders.  
 



 Ajay Kumar Gottem et al. / International Journal of Computing, 21(3) 2022, 383-390 

390 VOLUME 21(3), 2022 

References 

[1] A. Aponte-Moreno, A. Moncada, F. Restrepo-Calle and C. Pedraza, "A 
review of approximate computing techniques towards fault mitigation in 
HW/SW systems," Proceedings of the 2018 IEEE 19th Latin-American 
Test Symposium (LATS), 2018, pp. 1-6. 
https://doi.org/10.1109/LATW.2018.8347241. 

[2] C. M. Kirsch and H. Payer, “Incorrect systems: It’s not the problem, it’s 
the solution,” Proceedings of the 49th ACM/EDAC/IEEE Design 
Automation Conference (DAC), June 2012, pp. 913–917. 
https://doi.org/10.1145/2228360.2228523. 

[3] H. Jiang, C. Liu, L. Liu, F. Lombardi and J. Han, “A review, classification 
and comparative evaluation of approximate arithmetic circuits,” ACM 
JETCAS, vol. 13, no. 4, art. no. 60, 2017. 
https://doi.org/10.1145/3094124. 

[4] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati and S. Mahlke, “SAGE: 
self-tuning approximation for graphics engines,” Proceedings of the 46th 
Annual IEEE/ACM International Symposium on Microarchitecture, 
2013, pp. 13-24. https://doi.org/10.1145/2540708.2540711. 

[5] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural 
Acceleration for general-purpose approximate programs,” Proceedings 
of the 2012 45th Annual IEEE/ACM International Symposium on 
Microarchitecture MICRO-45, 20121, pp. 105-115. 
https://doi.org/10.1109/MICRO.2012.48. 

[6] W. Liu, F. Lombardi, M. Schultte, “Approximate computing: From 
circuits to applications,” Proceedings of the IEEE, vol. 108, no. 12, pp. 
2103-2107, 2020. https://doi.org/10.1109/JPROC.2020.3033361. 

[7] K. M. Priyadarshini, R. S. E. Ravindran, P. R. Bhaskar, “A detailed 
scrutiny and reasoning on VLSI binary adder circuits and architectures,” 
International Journal of Innovative Technology and Exploring 
Engineering, vol. 8, issue 7, pp. 887-895, 2019. 

[8] N. Soumya, K. Sai Kumar, K. Raghava Rao, S. Rooban, R P. Sampath 
Kuma, G. N. Santhosh Kumar, “4-bit multiplier design using CMOS 
gates in electric VLSI,” International Journal of Recent Technology and 
Engineering, vol. 8, issue 2, pp. 1172-1177, 2019. 
https://doi.org/10.35940/ijrte.B1742.078219. 

[9] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst. “DVAFS: 
Trading computational accuracy for energy through dynamic-
voltageaccuracy-frequency-scaling,” Proceedings of the 2017 IEEE 
Conference on Design, Automation and Test in Europe (DATE), March 
2017, pp. 488–493. https://doi.org/10.23919/DATE.2017.7927038. 

[10] B. Balaji, N. Ajay Nagendra, E. Radhamma, A. Krishna Murthy, M. 
Lakshmana Kumar, “Design of efficient 16 bit CRC with optimized 
power and area in VLSI circuits,” International Journal of Innovative 
Technology and Exploring Engineering, vol. 8, issue 8, pp. 87-91, 2019. 

[11] B. Murali Krishna, G. L. Madhumati, H. Khan, “FPGA based pseudo 
random sequence generator using XOR/XNOR for communication 
cryptography and VLSI testing applications,” International Journal of 
Innovative Technology and Exploring Engineering, vol. 8, issue 4, pp. 
485-494, 2019. 

[12] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven 
computation: A voltage-scalable, variation-aware, quality-tuning motion 
estimator,” Proceedings of the 2009 ACM/IEEE International 
Symposium on Low Power Electronics and Design (ISLPED), Aug. 
2009, pp. 195–200. https://doi.org/10.1145/1594233.1594282. 

[13] C. Santhosh, R. S. E. Ravindran, U. B. P. Vulchi, V. Thumati, M. S. 
Gufran, D. Bhavana, S. V. Cheerla, “Design and verification of half dder 
using look up table (LUT) in quantum dot cellular automata (QCA),” 
International Journal of Advanced Science and Technology, vol. 28, issue 
16, pp. 1804-1809, 2016. 

[14] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “RAP-CLA: A 
reconfigurable approximate carry look-ahead adder,” IEEE TCAS-II, vol. 
65, no. 8, pp. 1089–1093, 2018. 
https://doi.org/10.1109/TCSII.2016.2633307. 

[15] Y. Kim, Y. Zhang, and P. Li, “An energy efficient approximate adder 
with carry skip for error resilient neuromorphic VLSI systems,” 
Proceedings of the International Conference on Computer Aided Design 
ICCAD, 2013, pp. 130–137. 
https://doi.org/10.1109/ICCAD.2013.6691108. 

[16] F. Ebrahimi-Azandaryani, O. Akbari, M. Kamal, A. Afzali-Kusha, 
M. Pedram, “Block-based carry speculative approximate adder for 
energy-efficient applications,” IEEE Transactions on Circuits and 
Systems II: Express Briefs, vol. 67, no. 1, pp. 137-141, 2020. 
https://doi.org/10.1109/TCSII.2019.2901060. 

[17] W. Xu, S. S. Sapatnekar, and J. Hu, “A simple yet efficient accuracy 
configurable adder design,” IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems, vol 26, issue 6, pp. 1112-1125, 2018. 
https://doi.org/10.1109/TVLSI.2018.2803081. 

[18] T. Han and D. A. Carlson, “Fast area efficient VLSI adders,” Proceedings 
of the 8th IEEE Symposium on Computer Arithmetic, Como, Italy, 1987, 
pp. 49-56. https://doi.org/10.1109/ARITH.1987.6158699. 

[19] K. Vitoroulis and A. J. Al-Khalili, “Performance of parallel prefix adders 
implemented with FPGA technology,” Proceedings of the 2007 IEEE 
Northeast Workshop on Circuits and Systems, 2007, pp. 498-501. 
https://doi.org/10.1109/NEWCAS.2007.4487969. 

[20] B. Ramkumar and H. M Kittur, “Low-power and area-efficient carry 
select adder,” IEEE Transactions on Very Large Scale Integration (VLSI) 
Systems, vol. 20, no. 2, pp. 371-375, 2012. 
https://doi.org/10.1109/TVLSI.2010.2101621. 

[21] F. Liu, F. Fereydouni Forouzandeh, O. A. Mohamed, G. Chen, X. Song 
and Q. Tan, "A comparative study of parallel prefix adders in FPGA 
implementation of EAC," Proceedings of the 2009 12th Euromicro 
Conference on Digital System Design, Architectures, Methods and Tools, 
2009, pp. 281-286. https://doi.org/10.1109/DSD.2009.135. 

 
 

 

Ajay Kumar Gottem was born in 
Amaravathi Village, Andhra Pradesh, 
INDIA in 1997. He received the B.tech 
degree in electronics and 
communication engineering from RVR 
and JC College of Engineering, Andhra 
Pradesh, India, in 2019. He is currently 
pursuing the M.tech degree in Very 
Large Scale Integration (VLSI) at KL 
University, Andhra Pradesh, India. 

 
 

 

ARUNMETHA SUNDARAMOORTHY is an 
Associate Professor in Department of 
ECE, KLEF (Deemed to be University), 
Guntur- Andhra Pradesh. He completed 
SERB-National Post-Doctoral Fellow (N-
PDF) in Anna University during the year 
2016-2018. He was completed Ph. D in 
the year 2016 from Anna University with 
CSIR-SRF fellowship. He focused his 
research and development work on Nano 
materials for energy and environmental  

application. He has to his credit more than 23 research papers in 
reputed International journals, 6 papers in conference proceedings 
and 2 patents are applied. Under his able guidance, 6 M. Tech., 
students have completed their M. Tech project work. Now, he his 
guiding 3 Ph. D scholars, His research interests include Embedded 
Systems, Internet of Things (IoTs) enabling technologies, and 
smart cities enabling services. 

 

 

ARAVINDHAN ALAGARSAMY received 
his B.E. in Electrical and Electronics 
Engineering from Madurai Kamaraj 
University, Madurai, India in 2003.He 
awarded the M. Tech., Degree in VLSI 
Design from Kalasalingam Academy of 
Research and Education, Tamilnadu 
India in 2009 and the Ph. D., Degree from 
National Institute of Technology, 
Tiruchirappalli in the area of Networks-
on-Chip. Currently, he is in a position of 
Associate   Professor,   Department   of 

ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 
Guntur Dist., AP, India. He had industrial experience as Design 
Engineer in Electronic Design Automation Industry. His research 
interest includes Network on Chip, Optimization, ASIC and FPGA 
and Soft Computing. 

 
 

 


