COMPUTATION OF HEAT AND MASS DISTRIBUTION IN SINTER LAYER BASED ON PDEs
DOI:
https://doi.org/10.47839/ijc.17.4.1144Keywords:
Ore sintering model, thermodynamics, mass transfer, system of partial differential equations.Abstract
The article presents mathematical model of interconnected physical processes on sintering machine during agglomeration of iron ore pellets. The mathematical model uses a system of partial differential equations. Velocity of the horizontal movement of the layer and the vertical velocity of the air movement through the layer as well as phase transition and simple chemical reactions of pellet and air components are taken into account in this model. The purpose of simulation is to determine the time dependency of sinter temperature distributed along the length and height of the layer and then define rational parameters for optimization of metallurgical process. In addition, concentration of sinter and gas components distributed along the height of the layer is computed. The numerical experiment shows that temperature front, which is lower in the layer cross-section, is sharper in comparison with the upper front, where the obtained agglomerate is cooled, as water requires a considerable amount of energy to evaporate. The obtained results are qualitatively consistent with the data in scientific literature.References
Y. A. Frolov, L. I. Polotskii, “Three-dimensional mathematical (dynamic) model of the sintering process. Part I,” Metallurgist, vol. 58, issue 11-12, pp. 1071-1079, 2015.
Y. A. Frolov, L. I. Polotskii, “Three-dimensional mathematical (dynamic) model of the sintering process. Part II,” Metallurgist, vol. 59, issue 1-2, pp. 9-15, 2015.
D. R. Ganin, V. G. Druzhkov, A. A. Panychev, A. N. Shapovalov, “Review and analysis of mathematical models for calculating the performance of sintering machines,” The Theory and Process Engineering of Metallurgical Production, vol. 15, Issue 2, pp. 20-25, 2014. (in Russian)
A. A. Panychev, A. P. Nikonova, “Use of mathematical models to optimize process parameters in the sintering of Mikhailovskii and Lebedinskii concentrates,” Metallurgist, vol. 52, issue 9-10, pp. 544-551, 2008.
K. S. Krasnikov, S. P. Shuvaev, “Computer modeling of influence of sinter composition and average speed of air on temperature distribution in layer,” in Proceedings of the International Conference on Information Technology in Metallurgy and Machine building, Dnipro, Ukraine, March 28-30, 2017, p. 39. (in Russian)
J. A. de Castro, Modeling Sintering Process of Iron Ore, in: V. I. Shatokha (Ed.), Sintering – Methods and Products, InTech, 2012, pp. 23-46. ISBN: 978-953-51-0371-4, DOI: 10.13140/RG.2.1.4666.7288.
J. A. de Castro, Y. Sazaki, J. Yagi, “Three dimensional mathematical model of the iron ore sintering process based on multiphase theory,” Materials Research, vol. 15, issue 6, pp. 848-858, 2012.
V. I. Shatokha, O. G. Velychko, “Study of softening and melting behaviour of iron ore sinter and pellets,” High Temperature Materials and Processes, vol. 31, pp. 215-220, 2012. DOI: 10.1515/htmp-2012-0027.
S. Suman, B. K. Giri, G. G. Roy, “Mathematical modelling of iron ore sintering process using genetic algorithm: effect of moisture evaporation and condensation on the temperature profile,” Computer Methods in Materials Science, vol. 1, pp. 141-146, 2013.
J. Nalevankova, A. Varga, M. Kukurugyová, R. Dzurňák, “Heat transfer during the sintering process of iron ore,” in Proceedings of Conference ISEC, July 20-24, 2015.
J. Muller, T. L. de Vries, B. A. Dippenaar, J. C. Vreugdenburg, “A finite difference model of the iron ore sinter process,” Journal of the Southern African Institute of Mining and Metallurgy, vol. 115, issue 5, pp. 409-417, 2015.
J. Muller, Journal of the Southern African Institute of Mining and Metallurgy, [Online]. Available: http://www.saimm.co.za/Conferences/PyroModelling/061-Muller.pdf.
R. Straka, T. Telejk, “1D mathematical model of coke combustion,” International Journal of Applied Mathematics, vol. 45, issue 3, pp. 245-248, 2015.
E. G. Egorova, Operational control of the process of iron ore sinter production, PhD Thesis, St. Petersburg State Technological Institute (technical university), 2016, 133 p. (in Russian)
A. S. Mnyh, “The study of the amount of heat release in the sinter charge layer,” Eastern-European Journal of Enterprise Technologies, vol. 6, issue 5, pp. 14-18, 2014. (in Ukrainian)
A.S. Mnyh, The improving of energy efficiency of thermal processes of bulk materials clotting with segregation intensification in stationary layers, DSc Thesis, Odessa National Polytechnic University, 2016, 355 p.
V. I. Korotich, Yu. A. Frolov, G. N. Bezdezhskii, Agglomeration of Ore-Bearing Materials, UGTU-UPI (Ural State Technical University – Ural Polytechnic Institute), Ekaterinburg, 2003, 400 p. (in Russian). ISBN 5-321-00336-X.
A.A. Eliseev, Research of Heat and Mass Transfer Processes during Sinter Agglomeration, Cherepovets State University, 2006, 24 p. (in Russian)
G. Wang, Z. Wen, G. Lou, R. Dou, X. Li, X. Liu, F. Su, “Mathematical modeling and combustion characteristic evaluation of a flue gas recirculation iron ore sintering process,” International Journal of Heat and Mass Transfer, Vol. 97, pp 964-974, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.087.
X.-H. Fan, Z.-Y. Yu, M. Gan, W.-Q. Li, Z. Ji, “Influence of O2 Content in Circulating Flue Gas on Iron Ore Sintering,” Journal of Iron and Steel Research International, Vol. 20, Issue 6, pp. 1-6, 2013. DOI: 10.1016/S1006-706X(13)60103-X.
Downloads
Published
How to Cite
Issue
Section
License
International Journal of Computing is an open access journal. Authors who publish with this journal agree to the following terms:• Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
• Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
• Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.