TIME SERIES PREDICTION USING ICA ALGORITHMS
DOI:
https://doi.org/10.47839/ijc.2.2.208Keywords:
Independent Component Analysis (ICA), Time Series Analysis, Neural Networks, Signal ProcessingAbstract
In this paper we propose a new method for volatile time series forecasting using Independent Component Analysis (ICA) algorithms and Savitzky-Golay filtering as preprocessing tools. The preprocessed data will be introduce in a based radial basis functions (RBF) Artificial Neural Network (ANN) and the prediction result will be compared with the one we get without these preprocessing tools or the classical Principal Component Analysis (PCA) tool.References
C.G. Puntonet A. Mansour, N. Ohnishi. Blind multiuser separation of instantaneous mixture algorithm based on geometrical concepts, Signal Processing 82 (2002). pp. 1155–1175.
M. Rodrguez Alvarez, C.G. Puntonet, I. Rojas. Separation of sources based on the partitioning of the space of observations, Lecture Notes in Computer Science 2085 (2001). pp. 762–769.
S. Amari, A. Cichocki, H. Yang. A new learning algorithm for blind source separation, Advances in Neural Information Processing Systems, MIT Press 8 (1996). pp. 757–763.
A. D. Back, A. S. Weigend. Discovering structure in finance using independent component analysis, Computational Finance (1997).
Andrew D. Back, Thomas P. Trappenberg. Selecting inputs for modelling using normalized higher order statistics and independent component analysis, IEEE Transactions on Neural Networks 12 (2001).
Andrew D. Back, A. S. Weigend. Discovering structure in finance using independent component analysis, 5th Computational Finance 1997 (1997).
A. J. Bell, T. J. Sejnowski. An information maximization approach to blind separation and blind deconvolution, Neural Computation 7 (1995), pp. 1129 – 1159.
G.E.P. Box, G.M. Jenkins, G.C. Reinsel. Time series analysis. forecasting and control. Prentice Hall, 1994.
P. Comon. Independent component analysis: A new concept?, Signal Processing 36 (1994). pp. 287–314.
S. Cruces. An unified view of bss algorithms(in spanish). University of Vigo, Spain, 1999.
J.M. Gorriz, J.J.G. dela Rosa, Carlos G. Puntonet, M. Salmeron Campos, New model for time-series forecasting using rbf?s and exogenous data, In Press (2003).
R.W. Hamming. Digital filters, 2a ed., Prentice Hall, 1983.
T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning, Springer, 2000.
A. Hyvarinen, E. Oja. Independent component analysis: Algorithms and applications, Neural Networks 13 (2000). pp. 411–430.
A. Hyvrinen, E. Oja. Independent component analysis: algorithms and applications, Neural Networks 1 (2000). pp. 411–430.
K. Kiviluoto, E. Oja, Independent component analysis for paralell financial time series. Proc. in ICONIP98 1 (1998), pp. 895–898.
T. Masters. Neural, novel and hybrid algorithms for time series analysis prediction. John Miley & Sons, 1995.
J. Platt. A resource-allocating network for function interpolation, Neural Computation 3 (1991). pp. 213–225.
D.S.G. Pollock. A handbook of time series analysis, signal processing and dynamics. Academic Press, 1999.
W. H. Press, S. A. Teukolsky, W. T. Vertterling, B. P. Flannery. Numerical recipes in c++, 2a ed. Cambridge University Press, 2002.
C.G. Puntonet. Nuevos Algoritmos de Separacin de Fuentes en Medios Lineales. Ph.D. thesis, University of Granada, Departamento de Arquitectura y Tecnologia de Computadores, 1994.
C.G. Puntonet, Ali Mansour. Blind separation of sources using density estimation and simulated annealing, IEICE Transactions on Fundamental of Electronics Communications and Computer Sciences E84-A (2001).
J. M. Gorriz Saez. Prediccion y Tecnicas de Separacion de Senales. Ph.D. thesis, University of Cadiz, Departamento de Ing. de Sistemas y Aut. Tec. Eleectronica y Electronica, 2003.
M. Salmern-Campos. Prediccin de Series Temporales con Redes Neuronales de Funciones Radiales y Tecnicas de Descomposicion Matricial. Ph.D. thesis, University of Granada, Departamento de Arquitectura y Tecnologya de Computadores, 2001.
Moises Salmeron, Julio Ortega, Carlos G. Puntonet, Alberto Prieto. Improved ran sequential prediction using orthogonaltechniques, Neurocomputing 41 (2001). pp. 153–172.
A. Savitzky, M.J.E. Golay. Analytical Chemestry 36 (1964). pp. 1627–1639.
F. J Theis, A. Jung, E.W. Lang, C.G. Puntonet, Multiple recovery subspace projection algorithm employed in geometric ica, in press on Neural Computation (2001).
J. Moody, C. J. Darken. Fast learning in networks of locally-tuned processing units, Neural Computation 1 (1989). pp. 284–294.
H. Ziegler. Applied Spectroscopy 35 (1981). pp. 88-92.
Downloads
Published
How to Cite
Issue
Section
License
International Journal of Computing is an open access journal. Authors who publish with this journal agree to the following terms:• Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
• Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
• Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.