Earth’s Stratospheric Aerosol Parameters Reconstruction from Polarimetric Measurements of the Sky

Authors

  • Petro Nevodovskyi
  • Oleksandr Ovsak
  • Anatoliy Vidmachenko
  • Оrest Ivakhiv
  • Oleksandr Zbrutskyi
  • Мykhaylo Geraimchuk

DOI:

https://doi.org/10.47839/ijc.20.4.2440

Keywords:

remote observation, aerosol, polarimeter, satellite

Abstract

Earth’s climate changes are the result of natural changes in the energy balance of Sun irradiation and influence of anthropogenic factors on the variations of ozone layer thickness and stratospheric aerosol abundance. It is developed a miniature polarimeter for satellite polarimetric experiments in the ultraviolet region of the sunlight spectrum. The main task of this device is to the obtain an information on the stratospheric aerosol physical properties. We tested this polarimeter on a bench specially designed and manufactured as well. It is possible to measure by it the phase dependences of the degree of linear polarization (DLP) of solar radiation scattered by the Earth’s atmosphere. A set of special computer programs was developed for comparing the spectral polarimetric measurements DLP data of cloudless sky with model calculations of DLP for the artificial gas-aerosol medium. Thus, the prototype of satellite polarimeter as well as special computer programs make it possible to study the Earth’s atmosphere aerosol physical characteristics.

References

O. S. Ugolnikov, I. A. Maslov, “Studies of the stratosphere aerosol layer based on polarization measurements of the twilight sky,” Cosmic Research, vol. 47, issue 3, pp. 198-207, 2009. https://doi.org/10.1134/S0010952509030022.

P. V. Nevodovskyi, O. V. Morozhenko, A. P. Vidmachenko, O. Ivakhiv, M. Geraimchuk, O. Zbrutskyi, “Tiny ultraviolet polarimeter for earth stratosphere from space investigation,” Proceedings of the IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2015), 24-26 September 2015, Warsaw, Poland, vol. 1, pp. 28-32. https://doi.org/10.1109/IDAACS.2015.7340695.

O. V. Morozhenko, A. V. Shavrina, O. A. Veles', “Conception of gas and aerosol pollution monitoring of the earth's atmosphere (for altitudes more than 30 km) on board the international space station,” Cosmic Science and Technology, vol. 6, no. 2/3, pp. 69-76, 2000. https://doi.org/10.15407/knit2000.02.069.

A. V. Morozhenko, A. P. Vidmachenko, P. V. Nevodovskii, “Aerosol in the upper layer of earth’s atmosphere,” Kinematics and Physics of Celestial Bodies, vol. 29, no. 5, pp. 243-246, 2013. https://doi.org/10.3103/S0884591313050073.

O. S. Ugolnikov, I. A. Maslov, “Stratospheric aerosol particles size distribution based on multi-color polarization measurements of the twilight sky,” Journal of Aerosol Science, vol. 117, pp. 139-148, 2018. https://doi.org/10.1016/j.jaerosci.2018.01.002.

O. S. Ugolnikov, I. A. Maslov, “Optical depths and vertical profiles of stratospheric aerosol based on multi-year polarization measurements of the twilight sky,” Journal of Aerosol Science, vol. 127, pp. 93-101, 2019. https://doi.org/10.1016/j.jaerosci.2018.10.006.

O. S. Ugolnikov, “Twilight sky photometry and polarimetry: the problem of multiple scattering at the twilight time,” Cosmic Investigations, vol. 37, no. 2, pp. 168-175, 1999.

M. F. Sterzik, S. Bagnulo, D. M. Stam, et al., “Spectral and temporal variability of Earth observed in polarization,” Astronomy & Astrophysics, vol. 622, id. A41, 19 p., 2019. https://doi.org/10.1051/0004-6361/201834213.

G. V. Rozenberg, Twilight, Moscow: Fizmatgis, 1963, 380 p. (in Russian).

P. V. Nevodovskyi, O. V. Morozhenko, A. P. Vidmachenko, O. Ivakhiv, O. Zbrutskyi, M. Geraimchuk, “Reliable stratospheric aerosol of the Earth’s atmosphere observations,” Proceedings of the IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT’2018), 24-27 May 2018, Kyiv, Ukraine, pp. 667-672. https://doi.org/10.1109/DESSERT.2018.8409208.

O. Dubovik, Zh. Li, M. I. Mishchenko, et al. “Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 224, pp. 474-511, 2019. ttps://doi.org/10.1016/j.jqsrt.2018.11.024.

O. Bazhenov, V. Burlakov, S. Dolgii, A. Nevzorov, N. Salnikova, “Optical monitoring of characteristics of the stratospheric aerosol layer and total ozone content at the Siberian Lidar Station (Tomsk: 56° 30' N; 85° E),” International Journal of Remote Sensing, vol. 36, issue 11, pp. 3034-3042, 2015. https://doi.org/10.1080/01431161.2015.1054964.

G. Taha, P.K. Bhartia, Z. Chen, P. Xu, R.P. Loughman, G. Jaross, “OMPS limb profiler: Extending SAGE and CALIPSO stratospheric aerosol records,” Proceedings of the American Geophysical Union, Fall Meeting 2017, 2017, abstract #A41O-07.

J. Hansen, “Long-term monitoring of global climate forcing and feedbacks,” Proceedings of the Conference on Climate Forsings and Feedbacks, Ed. by J. Hansen, W. Rossow, I. Fung, New York, 1992, pp. 6-12.

J. E. Hansen, A. Arking, “Clouds of Venus: Evidense for their nature,” Science, vol. 171, no. 3972, pp. 669-672, 1971. https://doi.org/10.1126/science.171.3972.669.

C. Gebhardt, A. Abuelgasim, “Scientific innovations from the Mars aerosol optical depth based on satellite data with a temporal resolution of hours,” Progress in Earth and Planetary Science, vol. 6, Article number: 31, 2019.

E. G. Yanovitskij, Z. O. Dumanskij, Tables on the Scattering of Light of a Polydisperse System of Spherical Particles, Kiev: Naukova dumka, 1972, 124 p. https://doi.org/10.1186/s40645-019-0276-z.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, J. Kaufman, J. Vanderlei Martins, E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” Journal of Quantitative Spectroscopy & Radiative Transfer, vol. 88, pp. 149-161, 2004. https://doi.org/10.1016/j.jqsrt.2004.03.030.

“Errors in UV reflectivity and albedo calculations due to neglecting polarization”, Piet Stammes Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, The Netherlands.

V. V. Avramchuk, Multicolor Polyrimetry of Light of Twilight and Daytime Sky at Zenith, Voprosy astrofiziki, Kiev: Naukova dumka, 1965, pp. 112–120. (in Russian).

D. L. Coffeen, “Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter,” Journal of the Optical Society of America, vol. 69, issue 8, pp. 1051-1064, 1979. https://doi.org/10.1364/JOSA.69.001051.

A. Mugnai, W.J. Wiscombe, “Scattering at radiation by moderately nonspherical particles,” J. Atmos. Sci., vol. 37, no. 6, pp. 1291–1307, 1980. https://doi.org/10.1175/1520-0469(1980)037<1291:SORBMN>2.0.CO;2.

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Amer., vol. 8, no. 5, pp. 871–882, 1991. https://doi.org/10.1364/JOSAA.8.000871.

M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” Ibid, vol. 55, no. 5, pp. 535–575, 1996. https://doi.org/10.1016/0022-4073(96)00002-7.

J. Takahashi, Y. Itoh, H. Akitaya, et al., “Phase variation of earthshine polarization spectra,” Publications of the Astronomical Society of Japan, vol. 65, no. 2, id. 38, pp. 1-9, 2013. https://doi.org/10.1093/pasj/65.2.38.

D. Deirmendjian, Electromagnetic scattering on spherical polydispersions, New York: Elsevier Scientific Publishing, 1969, 290 p.

C. Emde, R. Buras-Schnell, M. Sterzik, S. Bagnulo, “Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine,” Astronomy & Astrophysics, vol. 605, id. A2, 15 p., 2017. https://doi.org/10.1051/0004-6361/201629948.

G. van de Hulst, Light Scattering by Small Particles, New York: John Wiley and Sons, London: Chapman and Hall, 1957.

P.A. Miles-Páez, E. Pallé, M.R. Zapatero Osorio, “Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine,” Astronomy & Astrophysics, vol. 562, id. L5, 4 p., 2014. https://doi.org/10.1051/0004-6361/201323009.

M. Yaknik, W. Heller, J. Witeczek, Tables of Angular Scattering Functions for Heterodisperse Systems of Spheres, Wayne State University Press (May 22, 1969), 1308 p.

O. S. Ovsak, V. M. Vashenko, A. P. Vid’machenko, Ye. A. Loza, Zh. I. Patlashenko, B. O. Ovsak, “Recovery of parameters for the multimodal aerosol component in the atmosphere from spectral polarimetric measurements,” Ukr. J. Phys., vol. 66, no. 6, pp. 466-477, 2021. https://doi.org/10.15407/ujpe66.6.466.

D. Huige, W. Qiyu, H.Hangbo, L. Siwen, Y. Qing, L. Jingjing, S. Yuchui, H. Dengxin. Aerosolmicrophisical particle parameter inversion and error analysis based on remote sencing data,” Comput. Sci. Geol.-Remote Sens., 10, 1753, 2018. https://doi.org/10.3390/rs10111753.

D. Huige, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, Q. Yan. “Vertical distribution of optical and microphysical properties of smog aerosols measureds by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. Transf., 188,28, 2017. https://doi.org/10.1016/j.jqsrt.2016.05.027.

“Air quality in Europe – 2019 report”, EEA Report No.10/2019, 2019.

O. J. Mousis, D. H. Atkinson, and the Hera Team.”The Hera Saturn entry probe mission. A proposal in response to ESA call for a medium size mission oppor tunity in ESA’s science programme for launch in 2019-2030”, 2016, https://arxiv.org/abs/ 1510.07685.

“Earth science and application from space. National imperatives for the next decade and beyond,” National Research Council of the National Academies, Washington, DC, 2007.

F. Karagulian, M. Gerbolos, M. Barbiere, A. Kotsev, F. Lagler, A. Borowiak, Review of Sensors for Air Quality Monitoring, Publications Office of the European Union, 2019.

https://science-data.larc.nasa.gov/large/

https://science-data.larc.nasa.gov/large/atmosphere.html

https://science-data.larc.nasa.gov/large/instruments.html

https://photojournal.jpl.nasa.gov/gallery/snt

https://www.nasa.gov/subject/3126/air/

http://www.aura.gsfc.nfsa.gov/science

http://www.priroda.su/item

http://www.nasa.gov/topics/earth/features/olympic

V. Bovchalyuk, G. Milinevs’kyi, V. Danylevs’kyi, F. Golub, M. Sosonkin, Yu. Yukhymchuk, T. Podvin, “Properties of an aerosol in the atmosphere over Kyiv according to lidar and photometric observations,” Kosm. Nauka Tekhnol., vol. 23, no. 6, 34, 2017. (in Ukrainian). https://doi.org/10.15407/knit2017.06.034.

Downloads

Published

2021-12-31

How to Cite

Nevodovskyi, P., Ovsak, O., Vidmachenko, A., Ivakhiv О., Zbrutskyi, O., & Geraimchuk М. (2021). Earth’s Stratospheric Aerosol Parameters Reconstruction from Polarimetric Measurements of the Sky. International Journal of Computing, 20(4), 528-534. https://doi.org/10.47839/ijc.20.4.2440

Issue

Section

Articles