Sentiment Analysis on E-Commerce Apparels using Convolutional Neural Network

Authors

  • Kusum Mehta
  • Supriya P. Panda

DOI:

https://doi.org/10.47839/ijc.21.2.2592

Keywords:

Deep Learning, Convolutional Neural Networks, Sentiment Analysis, Long Short Term Memory (LSTM), Word2Vec, Term Frequency – Inverse Document Frequency (TF-IDF)

Abstract

The Fourth Industrial Revolution (4.0) is a fusion of advances in Artificial Intelligence (AI), Robotics, the Internet of Things (IoT), Genetic Engineering, Quantum Computing, and other technologies. A large number of people are using internet-based services as a result of enhanced internet infrastructure and decreased costs. As a result, such businesses' attempts to penetrate internet media are disrupted. The e-commerce company, like Amazon, offers both customer-to-customer and business-to-business services in the apparel sector. Companies must understand the needs of buyers to maximize their profits. As a result, consumer sentiment analysis is carried out. However, because this procedure is time-consuming, it is made automatically utilizing artificial intelligence approaches. According to the findings of a study on sentiment analysis on an E-Commerce-based web store for women, the apparels review dataset using the CNN method with the word vector generator and TF-IDF can produce a higher accuracy of 94%.

References

Digital 2021: India. [Online]. Available at: https://datareportal.com/reports/digital-2021-india

K. K. Kapoor, K. Tamilmani, N. P. Rana, P. Patil, Y. K. Dwivedi, S. Nerur, “Advances in social media research: Past, present and future,” Information Systems Frontiers, vol. 20, issue 3, pp.531-558, 2018. https://doi.org/10.1007/s10796-017-9810-y.

How Social Media has Changed how we Consume News. [Online]. Available at: https://www.forbes.com/sites/nicolemartin1/2018/11/30/how-social-media-has-changed-how-we-consume-news.

Y. K. Dwivedi, E. Ismagilova, D. L. Hughes, J. Carlson, R. Filieri, J. Jacobson, V. Kumar, “Setting the future of digital and social media marketing research: Perspectives and research propositions,” International Journal of Information Management, 102168, 2020. https://doi.org/10.1016/j.ijinfomgt.2020.102168.

P. Devadas, Sentiment Analysis using Contextual Approach for E-Commerce Reviews, 2021.

M. H. Munna, M. R. I. Rifat, A. S. M. Badrudduza, “Sentiment analysis and product review classification in e-commerce platform,” Proceedings of the 2020 23rd IEEE International Conference on Computer and Information Technology ICCIT, 2020, pp. 1-6. https://doi.org/10.1109/ICCIT51783.2020.9392710.

J. Kalyani, P. Bharathi, P. Jyothi, “Stock trend prediction using news sentiment analysis,” arXiv preprint arXiv:1607.01958, 2016.

E. Kochkina, M. Liakata, I. Augenstein, “Turing at semeval-2017 task 8: Sequential approach to rumour stance classification with branch-lstm,” arXiv preprint arXiv:1704.07221, 2017. https://doi.org/10.18653/v1/S17-2083.

I. Augenstein, T. Rocktäschel, A. Vlachos, K. Bontcheva, “Stance detection with bidirectional conditional encoding,” arXiv preprint arXiv:1606.05464, 2016. https://doi.org/10.18653/v1/D16-1084.

H. Jelodar, Y. Wang, R. Orji, S. Huang, “Deep sentiment classification and topic discovery on novel coronavirus or covid-19 online discussions: Nlp using lstm recurrent neural network approach,” IEEE Journal of Biomedical and Health Informatics, vol. 24, issue 10, pp. 2733-2742, 2020. https://doi.org/10.1109/JBHI.2020.3001216.

D. Murthy, S. Allu, B. Andhavarapu, M. Bagadi, “Text based sentiment analysis using LSTM,” Int. J. Eng. Res. Tech. Res, vol. 9, issue 5, pp. 299-303, 2020. https://doi.org/10.17577/IJERTV9IS050290.

M. A. Nurrohmat, S. N. Azhari, “Sentiment analysis of novel review using long short-term memory method,” Indonesian Journal of Computing and Cybernetics Systems (IJCCS), vol. 13, issue 3, pp.209-218, 2019. https://doi.org/10.22146/ijccs.41236.

L. Kurniasari, A. Setyanto, “Sentiment analysis using recurrent neural network,” Journal of Physics: Conference Series, vol. 1471, 012018, 2020. https://doi.org/10.1088/1742-6596/1471/1/012018.

W. Uther, D. Mladenić, M. Ciaramita, B. Berendt, A. Kołcz, M. Grobelnik, M. Witbrock, J. Risch, S. Bohn, S. Poteet, A. Kao, L. Quach, J. Wu, E. Keogh, R. Miikkulainen, P. Flener, U. Schmid, F. Zheng, G. Webb, S. Nijssen, “TF–IDF,” In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA, 2011, pp. pp 986–987. https://doi.org/10.1007/978-0-387-30164-8_832.

I. Abu El-Khair, “TF*IDF, In: LIU, L., ÖZSU, M.T. (eds) Encyclopedia of Database Systems. Springer, Boston, MA, 2009, pp 3085–3086. https://doi.org/10.1007/978-0-387-39940-9_956.

V. Sundaram, S. Ahmed, S. A. Muqtadeer, R. R. Reddy, “Emotion analysis in text using TF-IDF,” Proceedings of the 2021 11th IEEE International Conference on Cloud Computing, Data Science & Engineering (Confluence), January 2021, pp. 292-297. https://doi.org/10.1109/Confluence51648.2021.9377159.

R. Indra, A. Girsang, “Classification of user comment using word2vec and deep learning,” International Journal of Emerging Technology and Advanced Engineering, vol. 11, pp. 1-8, 2021. ttps://doi.org/10.46338/ijetae0521_01.

V. K. Ayyadevara, “Word2vec,” Pro Machine Learning Algorithms, Apress, Berkeley, CA, 2018, pp. 167-178. https://doi.org/10.1007/978-1-4842-3564-5_8.

A. K. Jha, A. Ruwali, K. B. Prakash, G. R. Kanagachidambaresan, “Tensorflow basics,” In: Prakash, K.B., Kanagachidambaresan, G.R. (eds) Programming with TensorFlow. EAI/Springer Innovations in Communication and Computing, Springer, Cham, 2021, pp. 5-13. https://doi.org/10.1007/978-3-030-57077-4_2.

I. Hull, I. “TensorFlow 2,” In: Machine Learning for Economics and Finance in TensorFlow 2, Apress, Berkeley, CA, 2021, pp. 1-59. https://doi.org/10.1007/978-1-4842-6373-0_1.

N. Silaparasetty, “Programming with Tensorflow,” In: Machine Learning Concepts with Python and the Jupyter Notebook Environment, Apress, Berkeley, CA, 2020, pp. 173-189. https://doi.org/10.1007/978-1-4842-5967-2_9.

D. Basler, Convolutional Neural Networks, 2021. https://doi.org/10.3139/9783446464261.006.

N. Ketkar, J. Moolayil, N. Ketkar, J. Moolayil, “Convolutional neural networks,” Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch, 2021, pp.197-242. https://doi.org/10.1007/978-1-4842-5364-9_6.

Y. V. R. Nagapawan, K. B. Prakash, G. R. Kanagachidambaresan, “Convolutional Neural Network,” In: Programming with TensorFlow, Springer, Cham, 2021, pp. 45-51. https://doi.org/10.1007/978-3-030-57077-4_6.

D. Paper, “Convolutional neural networks,” In: TensorFlow 2.x in the Colaboratory Cloud, Apress, Berkeley, CA. 2021, pp. 153-181. https://doi.org/10.1007/978-1-4842-6649-6_7.

Women's E-Commerce Clothing Reviews. Dataset. [Online]. Available at: https://www.kaggle.com/nicapotato/womens-ecommerce-clothing-reviews

Slovin’s Formula: What is it and When do I use it? [Online]. Available at: https://www.statisticshowto.com/how-to-use-slovins-formula/

A. M. Adam, “Sample size determination in survey research,” Journal of Scientific Research and Reports, pp. 90-97, 2020. https://doi.org/10.9734/jsrr/2020/v26i530263.

R. Cowie, C. Cox, J. C. Martin, A. Batliner, D. Heylen, K. Karpouzis, “Issues in data labelling,” In: Emotion-oriented Systems, Springer, Berlin, Heidelberg, 2011, pp. 213-241. https://doi.org/10.1007/978-3-642-15184-2_13.

M. Desmond, M. Muller, Z. Ashktorab, C. Dugan, E. Duesterwald, K. Brimijoin, C. Finegan-Dollak, M. Brachman, A. Sharma, N. N. Joshi, Q. Pan, “Increasing the speed and accuracy of data labeling through an AI assisted interface,” Proceedings of the 26th International Conference on Intelligent User Interfaces, 2021, pp. 392-401. https://doi.org/10.1145/3397481.3450698.

R. Lischner, “Case-folding,” In: Exploring C++ 11, Apress, Berkeley, CA, 2013, pp. 111-113. https://doi.org/10.1007/978-1-4302-6194-0_19.

A. Kulkarni, A. Shivananda, “Advanced natural language processing,” In: Natural Language Processing Recipes, Apress, Berkeley, CA, 2019, pp. 97-128. https://doi.org/10.1007/978-1-4842-4267-4_4.

C. Ng, J. Alarcon, Artificial Intelligence in Accounting: Practical Applications, Routledge, 2020. https://doi.org/10.4324/9781003003342.

U. Qamar, M. S. Raza, “Text mining,” In: Data Science Concepts and Techniques with Applications, Springer, Singapore, 2020, pp. 133-151. https://doi.org/10.1007/978-981-15-6133-7_7.

H. Hassani, C. Beneki, S. Unger, M. T. Mazinani, and M. R. Yeganegi, “Text Mining in Big Data Analytics,” Big Data and Cognitive Computing, vol. 4, no. 1, p. 1, 2020, https://doi.org/10.3390/bdcc4010001.

G. Di Gennaro, A. Buonanno, F. A. Palmieri, “Considerations about learning Word2Vec,” The Journal of Supercomputing, vol. 77, issue 11, pp. 1-16, 2021.

V. Q. Nguyen, T. N. Anh, and H.-J. Yang, “Real-time event detection using recurrent neural network in social sensors,” International Journal of Distributed Sensor Networks, vol. 15, no. 6, p. 155014771985649, 2019, https://doi.org/10.1177/1550147719856492.

Downloads

Published

2022-06-30

How to Cite

Mehta, K., & Panda, S. P. (2022). Sentiment Analysis on E-Commerce Apparels using Convolutional Neural Network. International Journal of Computing, 21(2), 234-241. https://doi.org/10.47839/ijc.21.2.2592

Issue

Section

Articles