MODEL-BASED METHOD TO MEASURE THERMAL COMFORT IN BUILDINGS

Authors

  • Konstantyn Spasokukotskiy
  • Hans-Rolf Trankler
  • Kateryna Lukasheva

DOI:

https://doi.org/10.47839/ijc.3.3.314

Keywords:

Estimation method, Measurement method, Thermal comfort, Indoor climate control, HVAC

Abstract

This paper describes a practical method of measurement a HVAC control new variable. The method is based upon model-based estimation of thermal comfort. The thermal comfort is the only physical value, that truly corresponds to the changed (due to dynamic processing) environment conditions in buildings. The dynamic processing is a consequence of a modern demand-driven decentralized room climate control, that has been presented earlier, or a consequence of improvement of wall thermal insulation, that is beyond the limits of the actual insulation standards (for example 2002 - Energy saving regulations in Germany). The differences between various model types will be discussed. Some results will be shown for the realized model type.

References

H. Trankler, F. Schneider. Das Intelligente Haus. Pflaum Verlag, Munchen 2001. (in German).

K Spasokukotskiy, D. Jelondz, H. Trankler. Technical base for separated rooms climate automatic control. Proceedings of the Workshop “IDAACS '2001: Technology and Applications”, Foros, Ukraine 1-4 July 2001.

K. Spasokukotskiy, R. Gra?nick, M. Horn. Parameter identification for the control of thermal comfort. Proceedings of the Symposium “Analysis Division (AD2002)”, Denver, CO, USA 2002.

K. Spasokukotskiy, H. Trankler. Efficiency Estimation for Demand-Driven Climate Control in Buildings. International Conference Sensors and Systems, St. Petersburg, Russian Federation 24-27 Jun 2002.

R. Gra?nick, H. Trankler. Occupancy-led Individual Room Control, Smart Systems and Devices, Hammamet, Tunis 27-30 March 2001. pp. 794-800.

Fanger. Thermal Comfort. New York, Kingsport Press, 1970.

D. Jelondz, K. Spasokukotskiy, H. Ruser. Concept and realisation of an EIB based automated room climate control. Conference EIB 2001, Technische Universitat Munchen, 4-5 October 2001.

Wernstedt, Jurgen: Experimentelle Proze?-analyse – 1.Aufl. – Berlin: Verl. Technik, 1989. (in German).

H. Bach, T. Kondermann, M. Madjidi. Systemsimulation in der Praxis – Erfahrungen und Perspektiven; FIA-Projekt von BMBF, Fachinstitut Gebaude-Klima e.V., Bietigheim-Bissingen 1995. (in German).

Building Energy Software. Tools Directory URL: www.eren.doe.gov/buildings/tools_directory/.

B. Gluck. Warmetechnisches Raummodell: gekoppelte Berechnungen und warmephysiologische Untersuchungen. Heidelberg: Muller, 1997. (in German).

Intelligente Hausinstrumentierung IWO-BAY, Abschlu?bericht anla?lich des Abschlu?seminars, BFS, Universitat der Bundeswehr Munchen, Institut fur Me?- und Automatisierungstechnik, 2002. (in German).

Research laboratory SmartHOME, URL: http://smarthome.et.unibw-muenchen.de.

Intelligente Hausinstrumentierung IWO-BAY, Erganzungen zum Abschlu?bericht anla?lich des Abschlu?seminars, BFS, Universitat der Bundeswehr Munchen, Institut fur Me?- und Automatisierungstechnik, 2003. (in German).

Bewertung von kostengunstigen anlagen-technischen Energiema?nahmen im Gebaude-bestand, F2353 Abschlu?bericht. Fraunhofer IRB Verlag. 1999. (in German).

EN ISO 7730, Moderate thermal environments – Determination of the PMV and PPD indices and specification of the conditions for thermal comfort, 1994.

V. Ananchenko, L. Gofman. Measurement theory. Rostov N/D: DGTU, 2002. (in Russian).

Downloads

Published

2014-08-01

How to Cite

Spasokukotskiy, K., Trankler, H.-R., & Lukasheva, K. (2014). MODEL-BASED METHOD TO MEASURE THERMAL COMFORT IN BUILDINGS. International Journal of Computing, 3(3), 125-130. https://doi.org/10.47839/ijc.3.3.314

Issue

Section

Articles