NUMERICAL METHOD OF VIBRATIONS RESEARCH IN LARGE FLEXIBLE SYSTEMS

Authors

  • Olena Mul
  • Delfim Torres

DOI:

https://doi.org/10.47839/ijc.4.1.325

Keywords:

Systems with distributed and discrete parameters, vibrations, numerical methods

Abstract

The mathematical model of the real flexible elastic system is considered with the distributed and discrete parameters, which presents the equation at derivative parts with non-classical maximum terms. Complication of maximum terms makes impossible finding of exact analytical decision of such maximum task, in connection with what for researches the numerical method of the normal fundamental systems of decisions is used. Dependence of frequencies of possible vibrations is explored on different physical parameters of system. It is shown, that introduction to reverse communication network after speed with the defined values of the reverse communication coefficient allows controling the frequency spectrum in which excitation of vibrations are possible.

References

K. Я. Кухта. В. П. Кравченко. В. А. Красношапка. Качественная теория управляемых динамических систем с непрерывно-дискретными параметрами. Наукова думка. Киев, 1986. с. 224.

O. Mul. On Conditions of Excitation of Self-Oscillations in a Nonconservative Dynamic System with Distributed Parameters, Cybernetics and Computing Technology, Complex Control Systems, Allerton Press, New York (111) (1998). pp. 70-72.

O. Mul. V. Kravchenko. Investigations of Vibrations in the Complex Dynamical Systems of Transmission Pipelines, "Interface and Transport Dynamics. Computational Modelling", Lecture Notes in Computational Science and Engineering, Springer-Verlag Berlin Heidelberg (32) (2003). pp. 295-300.

В. А. Красношапка. К устойчивости систем с распределенными параметрами при реализации активного управления большими гибкими системами, Проблемы управления и информатики, Киев (6) (2000). с. 60-65.

K. Я. Кухта. В. П. Кравченко. Нормальные фундаментальные системы в задачах теории колебаний. Наукова думка. Киев, 1973. с. 205.

Downloads

Published

2014-08-01

How to Cite

Mul, O., & Torres, D. (2014). NUMERICAL METHOD OF VIBRATIONS RESEARCH IN LARGE FLEXIBLE SYSTEMS. International Journal of Computing, 4(1), 52-59. https://doi.org/10.47839/ijc.4.1.325

Issue

Section

Articles