An Intelligent System for Thyroid Dysfunction Prediction

Authors

  • Elaf A. Abd Al-Kareem
  • Samah J. Saba

DOI:

https://doi.org/10.47839/ijc.23.2.3548

Keywords:

thyroid prediction, DNN, ISSA, SSA, feature selection

Abstract

The prediction of thyroid diseases has become increasingly important in recent years. The feature engineering part is generally less studied in existing approaches than model optimization. To circumvent these restrictions, feature engineering for machine learning (ML) and deep learning models are examined in our research. This paper proposes a system to predict thyroid dysfunction. A model comprises three stages: preprocessing of the data, selection of features, and classification. A standard scalar normalizes the data after filling missing values with mean values. A Deep Neural Network (DNN) is utilized for classification, and the Improved Salp Swarm Algorithm (ISSA) is used for feature selection. Finally, accuracy is utilized to estimate the system proposed. The UCI thyroid illness datasets are used in our investigation.  In experiments with the DNN model, deep learning classifiers based on selected features produce the highest accuracy of 99.68%. The model proposed has superior performance compared to state-of-the-art methods.

References

A. Tyagi, R. Mehra, and A. Saxena, “Interactive thyroid disease prediction system using machine learning technique,” Proceedings of the 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2018, pp. 689–693. https://doi.org/10.1109/PDGC.2018.8745910.

F. Saiti, A. A. Naini, M. A. Shoorehdeli, and M. Teshnehlab, “Thyroid disease diagnosis based on genetic algorithms using PNN and SVM,” Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009, pp. 1–4. https://doi.org/10.1109/ICBBE.2009.5163689.

S. Nussey and Saffron Whitehead., “Endocrinology: An integrated approach,” Oxford: BIOS Scientific Publishers; 2001. PMID: 20821847. https://doi.org/10.1201/b15306.

J. H. Romaldini, J. A. Sgarbi, and C. S. Farah, “Subclinical thyroid disease: subclinical hypothyroidism and hyperthyroidism,” Arq. Bras. Endocrinol. & Metabol., vol. 48, pp. 147–158, 2004. https://doi.org/10.1590/S0004-27302004000100016.

L. Aversano et al., “Thyroid disease treatment prediction with machine learning approaches,” Procedia Comput. Sci., vol. 192, pp. 1031–1040, 2021. https://doi.org/10.1016/j.procs.2021.08.106.

K. Shankar, S. K. Lakshmanaprabu, D. Gupta, A. Maseleno, V. H. C. de Albuquerque, “Optimal feature-based multi-kernel SVM approach,” J. Supercomput., vol. 76, pp. 1128–1143, 2020. https://doi.org/10.1007/s11227-018-2469-4.

T. Alyas, M. Hamid, K. Alissa, T. Faiz, N. Tabassum, and A. Ahmad, “Empirical method for thyroid disease classification using a machine learning approach,” BioMed Research Inernational, vol. 2022, Article ID 9809932, pp. 1-10, 2022. https://doi.org/10.1155/2022/9809932.

G. Chaubey, D. Bisen, S. Arjaria, and V. Yadav, “Thyroid disease prediction using machine learning approaches,” Natl. Acad. Sci. Lett., vol. 44, no. 3, pp. 233–238, 2021. https://doi.org/10.1007/s40009-020-00979-z.

I. Ioniţă and L. Ioniţă, “Prediction of thyroid disease using data mining techniques,” BRAIN. Broad Res. Artif. Intell. Neurosci., vol. 7, no. 3, pp. 115–124, 2016. https://doi.org/10.24846/v25i3y201612.

S. Sankar, A. Potti, G. N. Chandrika, and S. Ramasubbareddy, “Thyroid disease prediction using XGBoost algorithms,” J. Mob. Multimed., vol. 18, no. 3, pp. 1–18, 2022. https://doi.org/10.13052/jmm1550-4646.18322.

R. Quinlan, “Thyroid disease,” 1987 UCI Machine Learning Repository. https://doi.org/10.24432/C5D010.

L. P. Madin, “Aspects of jet propulsion in salps,” Can. J. Zool., vol. 68, no. 4, pp. 765–777, 1990. https://doi.org/10.1139/z90-111.

P. A. V. Anderson and Q. Bone, “Communication between individuals in salp chains. II. Physiology,” Proc. R. Soc. London. Ser. B. Biol. Sci., vol. 210, no. 1181, pp. 559–574, 1980. https://doi.org/10.1098/rspb.1980.0153.

S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, “Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163–191, 2017. https://doi.org/10.1016/j.advengsoft.2017.07.002.

L. Abualigah, M. Shehab, M. Alshinwan, and H. Alabool, “Salp swarm algorithm: A comprehensive survey,” Neural Comput. Appl., vol. 32, pp. 11195–11215, 2020. https://doi.org/10.1007/s00521-019-04629-4.

S. Ben Chaabane, A. Belazi, S. Kharbech, A. Bouallegue, and L. Clavier, “Improved salp swarm optimization algorithm: Application in feature weighting for blind modulation identification,” Electronics, vol. 10, no. 16, p. 2002, 2021. https://doi.org/10.3390/electronics10162002.

S. Mahdavi, S. Rahnamayan, and K. Deb, “Opposition based learning: A literature review,” Swarm Evol. Comput., vol. 39, pp. 1–23, 2018. https://doi.org/10.1016/j.swevo.2017.09.010.

A. A. Ewees, M. Abd Elaziz, and E. H. Houssein, “Improved grasshopper optimization algorithm using opposition-based learning,” Expert Syst. Appl., vol. 112, pp. 156–172, 2018. https://doi.org/10.1016/j.eswa.2018.06.023.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, 2017. https://doi.org/10.1109/JPROC.2017.2761740.

R. Jha, V. Bhattacharjee, and A. Mustafi, “Increasing the prediction accuracy for thyroid disease: a step towards better health for society,” Wirel. Pers. Commun., vol. 122, no. 2, pp. 1921–1938, 2022. https://doi.org/10.1007/s11277-021-08974-3.

A. Selwal and I. Raoof, “A Multi-layer perceptron based intelligent thyroid disease prediction system,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 1, pp. 524–533, 2020. https://doi.org/10.11591/ijeecs.v17.i1.pp524-532.

N. A. Saeed and Z. T. M. Al-Ta’i, “Heart disease prediction system using optimization techniques,” in New Trends in Information and Communications Technology Applications, 2020, pp. 167–177. https://doi.org/10.1007/978-3-030-55340-1_12.

N. A. Saeed and Z. T. M. Al-Ta’i, “Feature selection using hybrid dragonfly algorithm in a heart disease predication system,” Int. J. Eng. Adv. Technol., vol. 8, no. 6, pp. 2862–2867, 2019. https://doi.org/10.35940/ijeat.F8786.088619.

S. Raisinghani, R. Shamdasani, M. Motwani, A. Bahreja, and P. Raghavan Nair Lalitha, “Thyroid prediction using machine learning techniques,” Proceedings of the Advances in Computing and Data Sciences: Third International Conference, ICACDS 2019, Ghaziabad, India, April 12-13, 2019, Revised Selected Papers, Part I 3, 2019, pp. 140–150. https://doi.org/10.1007/978-981-13-9939-8_13.

P. S. Prerana and K. Taneja, “Predictive data mining for diagnosis of thyroid disease using neural network,” Int. J. Res. Manag. Sci. & Technol., vol. 3, no. 2, pp. 75–80, 2015.

Downloads

Published

2024-09-09

How to Cite

Abd Al-Kareem, E. A., & Saba, S. J. (2024). An Intelligent System for Thyroid Dysfunction Prediction. International Journal of Computing, 23(2), 281-286. https://doi.org/10.47839/ijc.23.2.3548

Issue

Section

Articles