Fractal Approach for Researching Information Emergency Features of Technological Parameters

Authors

  • Pavlo Budanov
  • Ihor Kyrysov
  • Yuliia Oliinyk
  • Kostiantyn Brovko
  • Stanislav Zhukov

DOI:

https://doi.org/10.47839/ijc.24.1.3889

Keywords:

random fractal signal, data process space volume, fractal dimension, fractal structure

Abstract

The use of a fractal-cluster theory apparatus is proposed to describe random information signals in the information space when technological parameters of a power plant unit deviate from standard specifications. It is found that when random information signals with warning signs are transmitted, the degree of filling of the three-dimensional phase information space changes, which is characterized by the informational fractal dimension as a decimal value. This demonstrates a clear connection between the degree of space filling and the changing quality of information in the information space. Analytical expressions are derived, allowing the establishment of a relationship between the increase in the amount of accidental information due to deviations from standard technological parameters and changes in the informational dimension of random fractal signals in space coordinates and real-time. This approach provides a robust tool for detecting potential failures by analyzing the behavior of the fractal dimension of the signals. Furthermore, it is determined that changes in the informational dimension of signals act as a sensitive indicator of the emergence of unstable system operating modes. This enables not only the identification of critical parameter deviations but also the assessment of potential accident risks at early stages.

References

P. Budanov, Yu. Oliinyk, A. Cherniuk, K. Brovko, “Fractal approach for the researching of information emergency features of technological parameters,” In AIP Conference Proceedings, Iraq, Al-Samawa: Al-Furat Al-Awsat Technical University, 2024, р. 040015. https://doi.org/10.1063/5.0191648.

I. Alhamrouni, N. H. Abdul Kahar, M. Salem, M. Swadi, Y. Zahroui, D. J. Kadhim, F. A. Mohamed, M. Alhuyi Nazari, “A Comprehensive review on the role of artificial intelligence in power system stability, control, and protection: Insights and future directions,” Applied Sciences, vol. 14, issue 14, p. 6214, 2024. https://doi.org/10.3390/app14146214.

A. Ayodeji, M. Li, L. Mohamed, A. Buono, I. Pierce, H. Ahmed, “Cyber security in the nuclear industry: A closer look at digital control systems, networks and human factors,” Progress in Nuclear Energy, vol. 161, р. 104738, 2023. https://doi.org/10.1016/j.pnucene.2023.104738.

J. Bae, G. Kim, S. J. Lee, “Real-time prediction of nuclear power plant parameter trends following operator actions,” Expert Systems with Applications, vol. 186, р. 115848, 2021. https://doi.org/10.1016/j.pnucene.2023.104738.

O. Brunetkin, K. Beglov, M. Maksymov, V. Baskakov, V. Vataman, V. Kryvda, “Designing an automated control system for changing npu energy release compensating for arising internal disturbing factors based on their approximation model,” Eastern-European Journal of Enterprise Technologies, vol. 3, issue 117, рр. 63–75, 2022. https://10.15587/1729-4061.2022.258394.

Z. Wu. H. Chen, Y. Chen, L. Cheng, B. Zhang, “Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization algorithm,” Applied Soft Computing, vol. 116, р. 108192, 2022. https://doi.org/10.1016/j.asoc.2021.108192.

D. Chicayban Bastos, L. A. Brasil Kowada, “How to detect whether Shor’s algorithm succeeds against large integers without a quantum computer,” Procedia Computer Science, vol. 195, рр. 145-151, 2021. https://doi.org/10.1016/j.procs.2021.11.020.

A. P. Durakovskiy, G. P. Gavdan, I. A. Korsakov, D. A. Melnikov, “About the cybersecurity of automated process control systems,” Procedia Computer Science, vol. 190, рр. 217-225, 2021. https://doi.org/10.1016/j.procs.2021.06.027.

D. A. Ejigu, X. Liu, “Dynamic modeling and intelligent hybrid control of pressurized water reactor NPP power transient operation,” Annals of Nuclear Energy, vol. 173, р. 109118, 2022. https://doi.org/10.1016/j.anucene.2022.109118.

P. Budanov, E. Khomiak, I. Kyrysov, K. Brovko, S. Kalnoy, O. Karpenko, “Building a model of damage to the fractal structure of the shell of the fuel element of a nuclear reactor,” Eastern-European Journal of Enterprise Technologies, vol. 8, issue 118, рр. 60-70, 2022. https://doi.org/10.15587/1729-4061.2022.263374.

J. Hui, “Discrete-time sliding mode prescribed performance controller via Kalman filter and disturbance observer for load following of a pressurized water reactor,” Energy, vol. 302, р. 131767, 2024. https://doi.org/10.1016/j.energy.2024.131767.

P. Budanov, Yu. Oliinyk, A. Cherniuk, K. Brovko, “Dynamic Fractal Cluster Model of Informational Space Technological Process of Power Station,” Lecture Notes on Data Engineering and Communications Technologies, vol. 221, рр. 141-155, 2024. https://doi.org/10.1007/978-3-031-71801-4_11.

D. Gupta, V. Goyal, J. Kumar, “Design of fractional-order NPID controller for the NPK model of advanced nuclear reactor,” Progress in Nuclear Energy, vol. 150, р. 104319, 2022. https://doi.org/10.1016/j.pnucene.2022.104319.

S. Gautam, P. K. Tamboli, K. Roy, V. H. Patankar, S. P. Duttagupta, “Sensors incipient fault detection and isolation of nuclear power plant using extended Kalman filter and Kullback–Leibler divergence,” ISA Transactions, vol. 92, рр. 180-190, 2019. https://doi.org/10.1016/j.isatra.2019.02.011.

M. Javaid, A. Haleem, R. P. Singh, S. Rab, R. Suman, “Significance of sensors for industry 4.0: Roles, capabilities, and applications,” Sensors International, vol. 2, р. 100110, 2021. https://doi.org/10.1016/j.sintl.2021.100110.

E. Jharko, E. Abdulova, K. M. Chernyshov, “Some aspects of intelligent human-operators decision support systems for NPP,” IFAC-PapersOnLine, vol. 55, issue 9, рр. 204-209, 2022. https://doi.org/10.1016/j.ifacol.2022.07.036.

R. Konishi, M. Sasano, M. Hayashi, T. Azuma, “Digitalization of pulse signal processing for Ex-Core instrumentation system in nuclear power plants,” Applied Sciences, vol. 14, issue 6, р. 2445, 2024. https://doi.org/10.3390/app14062445.

G. Li, D. Yang, B. Wan, K. Li, D. Li, Y. Han, S. Zeng, “Design and construction of power range channel for the third generation reactor nuclear instrumentation system,” Nuclear Engineering and Design, vol. 376, р. 111099, 2021. https://doi.org/10.1016/j.nucengdes.2021.111099.

J. Li, M. Lin, Y. Li, X. Wang, “Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions,” Energy, vol. 254, р. 124358, 2022. https://doi.org/10.1016/j.energy.2022.124358.

T. H. Lin, T. C. Wang, S. C. Wu, “Deep learning schemes for event identification and signal reconstruction in nuclear power plants with sensor faults,” Annals of Nuclear Energy, vol. 154, р. 108113, 2021. https://doi.org/10.1016/j.anucene.2020.108113.

K. S. Son, J. W. Lee, S. H. Seong, “Study on the digitalization of trip equations including dynamic compensators for the reactor protection system in NPPs by using the FPGA,” Nuclear Engineering and Technology, vol. 55, issue 8, рр. 2952-2965, 2023. https://doi.org/10.1016/j.net.2023.05.006.

A. Symonov, O. Klevtsov, S. Trubchaninov, O. Lazurenko, “Computer security of npp instrumentation and control systems: Computer security justification documents,” Nuclear and Radiation Safety, vol. 4, issue 84, рр. 73-81, 2019. https://doi.org/10.32918/nrs.2019.4(84).09.

S. M. Mahmoudi, M. Aghaie, “Evaluation of fuzzy based HS and GSA on reloading cycle length optimization of PWR nuclear power plant,” Annals of Nuclear Energy, vol. 134, рр. 1-10, 2019. https://doi.org/10.1016/j.anucene.2019.05.058.

M. S. Islam, M. P. Nepal, M. Skitmore, G. Kabir, “A knowledge-based expert system to assess power plant project cost overrun risks,” Expert Systems with Applications, vol. 136, рр. 12-32, 2019. https://doi.org/10.1016/j.eswa.2019.06.030.

Т. Zhou, M. Modarres, E. L. Droguett, “Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey,” Reliability Engineering & System Safety, vol. 213, р. 107782, 2021. https://doi.org/10.1016/j.ress.2021.107782.

N. S. Awarayi, O. Appiah, B. A. Weyori, C. B. Ninfaakang, “A digital image watermarking using DWT and L-shaped Tromino fractal encryption,” International Journal Image, Graphics and Signal Processing (IJIGSP), vol. 13, no. 3, рp. 33-43, 2021. https://doi.org/10.5815/ijigsp.2021.03.03.

Downloads

Published

2025-03-31

How to Cite

Budanov, P., Kyrysov, I., Oliinyk, Y., Brovko, K., & Zhukov, S. (2025). Fractal Approach for Researching Information Emergency Features of Technological Parameters. International Journal of Computing, 24(1), 171-177. https://doi.org/10.47839/ijc.24.1.3889

Issue

Section

Articles