INTEGRATION OF ARTIFICIAL NEURAL NETWORKS FOR IDENTIFICATION OF COMPUTER SYSTEMS STATES

Authors

  • Oksana Pomorova

DOI:

https://doi.org/10.47839/ijc.5.2.394

Keywords:

Diagnosing of computer systems, Artificial neural networks, The union neural nets experts, Clusterization of computer systems states

Abstract

The main principles of methodology of intellectualization computer systems diagnosing process are presented in paper.Offered the information model, method and means of computer systems states clusterization provide an opportunity of diagnosing on the basis of the incomplete diagnostic information. For identification of computer systems states are used the union of neural nets experts which are constructed with use of artificial neural networks architecture ART2 and SOM.

References

Мюллер С. Модернизация и ремонт ПК, 16-е издание: Пер. с англ. - М.: Издательский дом «Вильямс», 2006. – 1328 с.

Локазюк В. М., Поморова О. В., Домінов А.О. Інтелектуальне діагностування мікропроцесорних пристроїв та систем: Навч. посібник для вузів. – Хмельницький – Київ: “Такі справи”, 2001. – 286с.

Rowland J. G., Jain L.C. Knowledge based systems for instrumentation diagnosis, system configuration and circuit and system design // Eng. Application Artificial Intelligent. – 1993. - vol. 6, no. 5, pp. 437-446.

Isermann R. On fuzzy logic applications for automatic control, supervision, and fault diagnosis // IEEE Syst., Man, Cybern. – 1998.- vol. 28, pp. 221-235.

Хайкин C. Нейронные сети: полный курс, 2-е издание. – М. :Издательский дом "Вильямс", 2006. -1104 с.

Totton К., Limb P.R. Experience in using neural networks for electronic diagnosis //Proc. 2nd Int. Conf. Artif. Neural Networks.- 1991., pp. 115-118.

AL-Jumah A.A., Arslan T., Artificial neural network based multiple fault diagnosis in digital circuits //Proc. ICCAS, - 1998. - vol. 2, pp. 304-307.

Cunningham P. A case study on the use of model-based systems for electronic fault diagnosis // Artifical Intelligent Engineer. - 1998. - vol. 12, pp. 283-295.

Pomorova O.V. Computer Devices Diagnostic Method on the Base of the Information Model, Proc. of the International Conference TCSET'2006 "Modern problems of radio engineering, telecommunications and computer science", Lviv, Slavske, Ukraine, February 28- March 4 - 2006., с. 152-154.

Гайдышев И. Анализ и обработка данных: специальный справочник – СПб: Питер, 2001. – 752 с.

S.G. Tzafestas and P.J. Dalianis, "Fault diagnosis in complex systems using artificial neural networks," in Proc. IEEE 3rd Conf. Contr. Applicat, 1994, pp. 877-882.

Lampinen J., Kostiainen T. Self-organizing map in data analysis - notes on overfitting and overinterpretation / Proc. European Symposium on Artificial Neural Networks (ESANN'2000), Bruges, Belgium, 2000. - pp.239-244.

G.A.Carpenter, S. Grossberg “Adaptive resonance theory”, The Handbook of Brain Theory and Neural Networks, Second Edition, MIT Press, (2002).

G. Carpenter, S. Grossberg, and D. Rosen,“ART 2-A: An adaptive resonance algorithm for rapid category learning and recognition,” Neural Additionally, Networks, vol. 4, pp. 493 –504, 1991.

Downloads

Published

2014-08-01

How to Cite

Pomorova, O. (2014). INTEGRATION OF ARTIFICIAL NEURAL NETWORKS FOR IDENTIFICATION OF COMPUTER SYSTEMS STATES. International Journal of Computing, 5(2), 31-42. https://doi.org/10.47839/ijc.5.2.394

Issue

Section

Articles