NEW METHOD FOR CONSTRUCTION OF OPTIMAL SCALAR QUANTIZERS FOR LAPLACIAN SOURCE

Authors

  • Zoran Peric
  • Jelena Nikolic
  • Dragoljub Pokrajac

DOI:

https://doi.org/10.47839/ijc.5.2.396

Keywords:

Scalar quantization, Laplacian source, quantizer parameters computing

Abstract

In this paper we consider methods for computing the necessary parameters when constructing the optimal scalar quantizers for Laplacian source. We investigate two approaches to the problem of finding the sets of optimal parameters. The first approach requires solving the transcendental equations, but provides nearly optimal values of the scalar quantizers’ parameters on successive manner. The proposed approach is an approximation method that linearizes transcendental equations providing simple and fast computing of scalar quantizers’ parameters. We demonstrate that the proposed technique provides parameters values that are very close to the optimal ones.

References

N.S. Jayant, Peter Noll, Digital coding of waveforms, Prentice-Hall, New Jersey, 1984., Chapter 4, pp. 129-139.

Wai C. Chu, Speech coding algorithms, John Wiley & Sons, New Jersey, 2003., Chapter 5, pp. 151-155.

S. P. Lloyd, Least squares quantization in PCM, unpublished memo., Bell Lab.,1957; IEEE Transactions on Information Theory, vol. IT-28, Mar. 1982, pp. 129-137.

J. Max, Quantizing for minimum distortion, IRE, Transactions on Information Theory, vol. IT-6, Mar. 1960., pp. 7-12.

Gary J. Sullivan, Efficient Scalar Quantization of Exponential and Laplacian Random Variables, IEEE Transactions on Information Theory, vol. 42, No. 5, September 1996., pp. 1365-1374.

Sangsin Na, On the Support of Fixed-Rate Minimum Mean-Squared Error Scalar Quantizers for a Laplacian Source, IEEE Transactions on Information Theory, Vol. 50, No. 5, May 2004., pp. 937-944.

Sangsin Na and David L. Neuhoff, On the Support of MSE-Optimal, Fixed-Rate, Scalar Quantizers, IEEE Transactions on Information Theory, Vol. 47, No. 7, November 2001., pp. 2972-2982.

Allen Gersho and Robert M. Gray, Vector Quantization and Signal Compression, Kluwer, Academ. Pub, 1992.

Robert Gray, Quantization and data compression, Lecture notes, Stanford University, 2004.

Downloads

Published

2014-08-01

How to Cite

Peric, Z., Nikolic, J., & Pokrajac, D. (2014). NEW METHOD FOR CONSTRUCTION OF OPTIMAL SCALAR QUANTIZERS FOR LAPLACIAN SOURCE. International Journal of Computing, 5(2), 50-54. https://doi.org/10.47839/ijc.5.2.396

Issue

Section

Articles