SIMULATION MODELING OF NEURAL CONTROL SYSTEM FOR SECTION OF MINE VENTILATION NETWORK

Authors

  • Iryna Turchenko
  • Volodymyr Kochan
  • Anatoly Sachenko

DOI:

https://doi.org/10.47839/ijc.5.2.404

Keywords:

Mine ventilation network, airflow control, neural network

Abstract

Static and dynamic simulation models of a section of a mine ventilation network in order to research a sequential neural control scheme of mine airflow are developed in this paper. The techniques of neural network training set creation for both simulation models, a structure of neural network and its training algorithm are described. The simulation modeling results using static and dynamic models have showed good potential capabilities of neural control approach.

References

http://www.sinomedia.net/eurobiz/v200402/regional0402.html

http://www.figarosensor.com/gaslist.html

I. Turchenko. Simulation Modeling of Multi-Parameter Sensor Signal Identification Using Neural Networks. Proceedings of the “Second IEEE International Conference on Intelligent Systems”, Varna, Bulgaria, 2004, vol. 3, pp. 48-53.

I. Turchenko, V. Kochan, A. Sachenko. Neural-Based Recognition of Multi-Parameter Sensor Signal Described by Mathematical Model, International Scientific Journal of Computing 3 (2) (2004). p. 140-147.

L.A. Puchkov, L.A. Bahvalov. Methods and algorithms of automatic control of coal mine ventilations. Nedra. Moscow, 1992. p. 399 (in Russian).

F.A. Abramov, L.P. Feldman, V.A. Svjatnyj. Modelling of dymanic processes in mine aerology. Naukova dumka. Kiev, 1981. p. 284 (in Russian).

V.A. Svjatnyj, S.S. Efremov. Development of the structure and operating algorithms of a microprocessor-based safe control system for mine ventilation, Mekh. Avtomat. Upravleniya (4) (1983). p. 31–34 (in Russian).

Hu Y., O. Koroleva, M. Krstic. Nonlinear control of mine ventilation networks, Systems and Control Letters 49 (4) (2003). p. 239-254.

В. Kosko. Neural Networks for Signal Processing. New Jersey: Prentice Hall, Englewood Cliffs, 1992.

G. Box, G. Jenkins. Time Series analysis: Forecasting and Control. Holden-Day. San Francisco, 1976.

L. Lunarzewski. Gas emission prediction and recovery in underground coal mines, International Journal of Coal Geology 35 (1-4) (1998). p. 117-145.

K. Noack. Control of gas emissions in underground coal mines, International Journal of Coal Geology 35 (1-4) (1998). p. 57-82.

X. Wu, E. Topuz. Analysis of mine ventilation systems using operations research methods, International Transactions in Operational Research 5 (4) (1998). p. 245-254.

I. Lowndes, A. Crossley, Z. Yang. The ventilation and climate modelling of rapid development tunnel drivages, Tunneling andUnderground Space Technology 19 (2) (2004). p. 139-150.

P.J. Werbos. Overview of Design and Capabilities in Neural Networks for Control. MIT Press, Cambridge (MA), 1990. p. 59-65.

K. Astrom. Towards Intelligent Control, IEEE Control Systems Magazine 9 (1989). p. 60-69.

D. White, D. Sofge. Handbook of Intelligent Control. Van Nostrand Reinhold. New York, 1992.

S. Omatu, M. Halid, R. Yusof. Neuro-control and its applications. Editors А. I. Galushkin, V. А. Ptichkin. IPRZHR. Moscow, 2000. p. 272 (in Russian).

P. Melin, O. Castillo. Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory, Applied Soft Computing Journal 3 (4) (2003). p. 353-362.

A. Calise, N. Hovakimyan, M. Idan. Adaptive output feedback control of nonlinear systems using neural networks, Automatica 37 (8) (2001). p. 1201-1211.

S. Yildirim. Adaptive robust neural controller for robots, Robotics and Autonomous Systems 46 (3) (2004). p. 175-184.

C. Ng, M. Hussain. Hybrid neural network – prior knowledge model in temperature control of a semi-batch polymerization process, Chemical Engineering and Processing 43 (4) (2004). p. 559-570.

Y. Oysal. A comparative study of adaptive load frequency controller designs in a power system with dynamic neural network models, Energy Conversion and Management 46 (15-16) (2005). p. 2656-2668.

E. Sanchez, L. Ricalde. Chaos control and synchronization, with input saturation, via recurrent neural networks, Neural Networks 16 (5-6) (2003). p. 711-717.

K. Kashihara, T. Kawada, K. Uemura, M. Sugimachi, K. Sunagawa. Adaptive Predictive Control of Arterial Blood Pressure Based on a Neural Network During Acute Hypotension, Annals of Biomedical Engineering 32 (10) (2004). p. 1365-1383.

K. Hornik, M. Stinchcombe, H. White. Multilayer Feedforward Networks are Universal Approximators, Neural Networks 2 (1989). p. 359-366.

M. Saerens, A. Soquet. A Neural Controller Based on Backpropagation Algorithm, Proceedings of “First IEE International Conference on Artificial Neural Networks”, London, UK, 1989. pp. 211-215.

Y. Iiguni, H. Sakai, H. Tokumaru. A Non-linear Regulator Design in the Presence of System Uncertainties Using Multi-layered Neural Networks, IEEE Transactions on Neural Networks 2 (1991). p. 410-417.

V. Golovko. Neural Networks: training, models and applications, Radiotechnika, Moscow, 2001, p. 256 (in Russian).

D. Rumelhart, G. Hinton, R. Williams. Learning representation by back-propagation errors, Nature (323) (1986). p. 533-536.

V. Golovko, Y. Savitsky, T. Laopoulos, A. Sachenko, L. Grandinetti. Technique of Learning Rate Estimation for Efficient Training of MLP, Proceedings of the “IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'2000)”, Como, Italy, 2000, vol. 1, pp. 323-328.

I. Turchenko, V. Kochan, A. Sachenko. Simulation Modeling of Neural Control System for Coal Mine Ventilation, Proceedings of the Fourth International Conference on Neural Networks and Artificial Intelligence (ICNNAI`2006), 2006, Brest (Belarus), pp. 93-98.

Downloads

Published

2014-08-01

How to Cite

Turchenko, I., Kochan, V., & Sachenko, A. (2014). SIMULATION MODELING OF NEURAL CONTROL SYSTEM FOR SECTION OF MINE VENTILATION NETWORK. International Journal of Computing, 5(2), 106-116. https://doi.org/10.47839/ijc.5.2.404

Issue

Section

Articles