COMPUTER AIDED DIAGNOSIS USING SOFT-COMPUTING TECHNIQUES AND IMAGE’S ISSUED REPRESENTATION: APPLICATION TO BIOMEDICAL AND INDUSTRIAL FIELDS

Authors

  • Kurosh Madani
  • Matthieu Voiry
  • Veronique Amarger
  • Nadia Kanaoui
  • Amine Chohra
  • Francois Houbre

DOI:

https://doi.org/10.47839/ijc.5.3.408

Keywords:

Computer aided diagnosis systems (CADS), soft-computing, artificial intelligent systems, industrial CADS applications, biomedical CADS applications

Abstract

It is interesting to notice that from “problem’s formulation” point of view “Industrial Computer Aided Diagnosis” and “Biomedical Computer Aided Diagnosis” could be formulated as a same diagnosis riddle: “How point out a correct diagnosis from a set of symptoms?”. The only difference between the two above-mentioned groups of problems is the nature of the monitored (diagnosed) system: in the first group the monitored system is an artificial machinery (plant, industrial process, etc…), while in the second, the monitored system is a living body (animal or human).One of the most appealing classes of approaches allowing handling the Computer Aided Diagnosis Systems’ design in the frame of the aforementioned dual point of view is Soft-Computing based techniques, especially those dealing with neural networks and fuzzy logic. In this article, we present two soft-computing based approaches dealing with CADS design. One aims designing a biomedical oriented CADS and the other sets sights on conceiving a CADS to overcome a real-world industrial quality control dilemma. The goal of the first system is to diagnose the human’s auditory pathway’s health. The target of the second is to detect and diagnose the high tech optical devices’ defects.

References

K. Balakrishnan, V. Honavar, Intelligent Diagnosis Systems, Tech. Report, Iowa State Univ., Ames, Iowa 50011-1040, U.S.A., 1997.

E. Turban, J.E. Aronson, Decision Support Systems and Intelligent Systems, Int. Edition, Sixth Edition, Prentice-Hall, 2001.

F. O. Karray , C. De Silva, Soft Computing and Intelligent Systems Design, Theory, Tools and Applications, Addison Wesley, ISBN 0-321-11617-8, 2004.

M. Meneganti, F. S. Saviello, R. Tagliaferri, Fuzzy Neural Networks for Classification and Detection of Anomalies. IEEE Transact. on Neural Networks, 9, No. 5, pp. 848-861, 1998.

G. I. S. Palmero, J. J. Santamaria, E. J. M. de la Torre, J. R. P. Gonzalez, Fault Detection and Fuzzy Rule Extraction in AC Motors by a Neuro-Fuzzy ART-Based System. Engineering Applications of AI, 18, Elsevier, pp. 867-874, 2005.

J. H. Piater, F. Stuchlik, H. Von Specht, R. Muhler, Fuzzy Sets for Feature Identification in Biomedical Signals with Self-Assessment of Reliability: An Adaptable Algorithm Modeling Human Procedure in BAEP Analysis. Comput. and Biomedical Resear., 28, pp. 335-353, 1995.

A. Vuckovic, V. Radivojevic, A. C. N. Chen, D. Popovic, Automatic Recognition of Alertness and Drowsiness from EEG by an Artificial Neural Network. Medical Engineering & Physics, 24 (5), pp. 349-360, 2002.

A. Wolf, C. H. Barbosa, E. C. Monteiro, M. Vellasco, Multiple MLP Neural Networks Applied on the Determination of Segment Limits in ECG Signals. LNCS 2687, Springer-Verlag Berlin Heidelberg, pp. 607-614, 2003.

A. Chohra, N. Kanaoui, V. Amarger, A Soft Computing Based Approach Using Signal-To-Image Conversion for Computer Aided Medical Diagnosis (CAMD). Information Processing and Security Systems, Ed.: K. Saeed, J. Pejas, Springer, pp. 365-374, 2005.

A. Chohra, N. Kanaoui, K. Madani, Hybrid Intelligent Classification for Computer Aided Diagnosis (CAD) Systems Using Image Representation. Int. Journal Image Processing and Communications, Vol. 10, No. 2, ISSN 1425-140x, pp. 07-15, 2005.

H. Yan, Y. Jiang, J. Zheng, C. Peng, Q. Li, A Multilayer Perceptron-Based Medical Support System for Heart Disease Diagnosis. Expert Systems with Applications, Elsevier, 2005.

R. Murray-Smith, T.A. Johansen, Multiple Model Approaches to Modelling and Control, Taylor & Francis Publishers, 1997.

J. Kittler, M. Hatef, R. P. W. Duin, J. Matas, On Combining Classifiers. IEEE Trans. Pattern Analysis and Machine Int., Vol. 20, No. 3, pp. 226-239, 1998.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2Ed. Prentice-Hall, 1999.

G. P. Zhang, Neural Networks for Classification: A Survey. IEEE Trans. on Systems, Man, and Cybernetics, Vol. 30, no. 4, 451-462, 2000.

M. Egmont-Petersen, D. De Ridder, H. Handels, Image Processing with Neural Networks – A Review. Pattern Recognition, 35, pp. 2279-2301, 2002.

M. Don, A. Masuda, R. Nelson, D. Brackmann, Successful Detection of Small Acoustic Tumors using the Stacked Derived-Band Auditory Brain Stem Response Amplitude. The American Journal of Otology 18, 5, pp. 608-621, 1997.

E. Vannier, O. Adam, J.F. Motsch, Objective Detection of Brainstem Auditory Evoked Potentials with a Priori Information from Higher Presentation Levels. Artificial Intelligence in Medicine, Vol. 25, pp. 283-301, 2002.

A. P. Bradley, W. J. Wilson, On Wavelet Analysis of Auditory Evoked Potentials. Clinical Neurophysiology, 115, pp. 1114-1128, 2004.

J. F. Motsh, La dynamique temporelle du tronc cerebral: receuil, extraction, et analyse optimale des potentiels evoques auditifs du tronc cerebral, PhD Thesis, Paris-XII University, 1987 (in French).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2 Ed., Prentice-Hall, 2002.

K. Madani, L. Thiaw, R. Malti, G. Sow, Multi-Modeling: a Different Way to Design Intelligent Predictors, LNCS 3512: “Computational Intelligence and Bio-inspired Systems”, Ed.: J. Cabestany, A. Prieto, and F. Sandoval, Springer Verlag Berlin Heidelberg, ISBN 3-540-26208-3, pp. 976 – 984, 2005

L.M. Reyneri, Weighted Radial Basis Functions for Improved Pattern Recognition and Signal Processing, Neural Processing Let., Vol. 2, No. 3, pp 2-6, May, 1995.

G. Tremiolles (de), K. Madani, P. Tannhof, A New Approach to Radial Basis Function’s like Artificial Neural Networks, NeuroFuzzy'96, IEEE European Workshop, Vol. 6 N° 2, pp 735-745, April 16 to 18, Prague, Czech Republic, 1996.

M.A. Arbib (ed.), Handbook of Brain Theory and Neural Networks, 2ed. M.I.T. Press. , 2003.

O, Azouaoui, A. Chohra, Soft Computing Based Pattern Classifiers for the Obstacle Avoidance Behavior of Intelligent Autonomous Vehicles (IAV). Int. J. of Applied Intelligence, Kluwer Academic Publishers, 16, no. 3, pp. 249-271, 2002.

L. A. Zadeh, The Calculus of Fuzzy If / Then Rules. AI Expert, 23-27, 1992.

H. Farreny, H. Prade, Tackling Uncertainty and Imprecision in Robotics, 3rd Int. Symp. on Robotics Research, pp. 85-91, 1985.

P. E. J. Flewitt and R. K. Wild, Light Microscopy. Physical Methods for materials characterisation, 1994.

M. Voiry, F. Houbre, V. Amarger, and K. Madani, Toward Surface Imperfections Diagnosis Using Optical Microscopy Imaging in Industrial Environment, Workshop on Advanced Control and Diagnosis, Mulhouse, France, pp. 139-144, 2005.

P. Bouchareine, Metrologie des Surfaces. Techniques de l'Ingenieur, vol. R1390, 1999 (in French).

S. Chatterjee, Design Considerations and Fabrication Techniques of Nomarski Reflection Microscope. Optical Engineering, vol. 42, no. 8, pp. 2202-2212, 2003.

M. Voiry, K. Madani, V. Amarger, F. Houbre, Toward Automatic Defects’ Clustering in Industrial Production Process Combining Optical detection and Unsupervised Artificial Neural Network techniques, Artificial Neural Networks and Intelligent Information Processing, INSTICC Press, N°ISBN: 978-972-8865-68-9, pp. 25-34, 2006.

T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas, Engineering Applications of the Self-Organizing Maps. Proceedings of the IEEE, vol. 84, no. 10, pp. 1358-1384, 1996.

T. Kohonen, Self Organizing Maps, 3rd edition, Berlin: Springer, 2001.

A. Choksuriwong, H. Laurent, and B. Emile, Comparison of invariant descriptors for object recognition. IEEE International Conference on Image Processing (ICIP) pp. 377-380, 2005.

S. Derrode, Representation de Formes Planes a Niveaux de Gris par Differentes Approximations de Fourier-Mellin Analytique en vue d'Indexation de Bases d'Images. Phd Thesis - Rennes I Univ., 1999. (in French)

F. Ghorbel, A Complete Invariant Description for Gray Level Images by the Harmonic Analysis Approach. Pattern Recognition, vol. 15, pp. 1043-1051, 1994.

G. Ravichandran and M. Trivedi, Circular-Mellin features for texture segmentation. IEEE Trans. Image Processing, vol. 4, pp. 1629-1640, 1995.

Downloads

Published

2014-08-01

How to Cite

Madani, K., Voiry, M., Amarger, V., Kanaoui, N., Chohra, A., & Houbre, F. (2014). COMPUTER AIDED DIAGNOSIS USING SOFT-COMPUTING TECHNIQUES AND IMAGE’S ISSUED REPRESENTATION: APPLICATION TO BIOMEDICAL AND INDUSTRIAL FIELDS. International Journal of Computing, 5(3), 43-53. https://doi.org/10.47839/ijc.5.3.408

Issue

Section

Articles