RISING OF THE TEXT DOCUMENTS SEARCH PRECISION BY USING THE ADAPTIVE ONTOLOGY

Authors

  • Romana Darevych

DOI:

https://doi.org/10.47839/ijc.6.1.424

Keywords:

Adaptive ontology, users information needs, weighted conceptual graphs

Abstract

Conceptual graphs are an effective tool for representation of the semantic content of text documents and domain ontology as well. In this article the new method of evaluation of text documents content similarity is proposed. The method consists in representation compared texts as its weighted conceptual graphs supplemented by related context from domain ontology and estimation of a distance between semantic weights centers of these graphs. It is shown that the method satisfies axioms of a metric. Procedures of the automatic tuning of ontology to the specified domain and information needs of user are developed. The results of experiment shows that the taking into account semantics of the used concepts, assertions and significance coefficients from adaptive ontology during the text processing rises the search precision on average 20 %.

References

P. Foltz, S. Dumais. Personalised Information Delivery: Analysis of Information Filtering Methods. Communications of the ACM 35(12), 1992.

E. Rasmussen. Clustering Algorithms. Information Retrieval: Data Structures & Algorithms. William B. Frakes and Ricardo Baeza-Yates (Eds.), Prentice Hall, 1992.

M. Montes-y-Gomez, A. Gelbukh, A. Lopez-Lopez. Comparison of Conceptual Graphs. Mexican International Conference on Artificial Intelligence MICAI 2000, Acapulco, Mexico, April 2000. Lecture Notes in Artificial Intelligence N 1793, Springer-Verlag, 2000.

H. Bulskov, R. Knappe, T. Andreasen. On Querying Ontologies and Databases. 6th International Conference on Flexible Query Answering Systems. Lyon, France, June 24-26. Springer-Verlag. Lecture Notes in Artificial Intelligence, 3055, 2004.

Д. Ночевнов. Методи та засоби адаптивного інформаційного пошуку на основі моделі користувача: Автореф. дис. канд. техн. наук: 05.13.06/Черкаський держ. технологічний ун-т. — Черкаси, 2005. — 20с.

Wang Hui-jin, Hu Hua, Li Qing. A dynamic knowledge base based search engine. Journal of Zhejiang University Science, 2005 6A(7), pp. 683-688.

John F Sowa. “Knowledge Representation: Logical, Philosophical and Computational Foundations”. 1-st edition, Thomson Learning, 1999.

T. Huibers, I. Ounis, J. Chevallet “Conceptual Graph Aboutness”, Proceedings of the 4th International Conference on Conceptual Structures (ICCS'96), Sydney, Australia, Lecture Notes in Artificial Intelligence, Springer. 1996., рр. 130-144.

D. Genest, M. Chein. “An Experiment in Document Retrieval Using Conceptual Graphs”. Lecture Notes in artificial Intelligence 1257, August 1997.

H. Myaeng, A. Lopez-Lopez “Conceptual Graph Matching: a Flexible Algorithm and Experiments”, Journal of Experimental and Theoretical Artificial Intelligence, Vol. 4, 1992.

M. Montes-y-Gomez, A. Gelbukh, A. Lopez-Lopez, R. Baeza-Yates. Flexible Comparison of Conceptual Graphs. 12th International Conference on Database and Expert Systems Applications DEXA 2001, Munich, Germany, September 2001. Lecture Notes in Computer Science, vol. 2113, Springer-Verlag, 2001.

Даревич Р.Р., Досин Д.Г., В.В.Литвин. Mетод автоматичного визначення інформаційної ваги понять в онтології бази знань // Відбір та обробка інформації. 2005.-Вип. 22(98).–с.105-111

Р. Седжвик. Фундаментальные алгоритмы на С++. Алгоритмы на графах: Пер. с англ./Роберт Седжвик. - СПб: ООО "ДиаСофтЮП", 2002. - 496 с.

Downloads

Published

2014-08-01

How to Cite

Darevych, R. (2014). RISING OF THE TEXT DOCUMENTS SEARCH PRECISION BY USING THE ADAPTIVE ONTOLOGY. International Journal of Computing, 6(1), 51-58. https://doi.org/10.47839/ijc.6.1.424

Issue

Section

Articles