RISING OF THE TEXT DOCUMENTS SEARCH PRECISION BY USING THE ADAPTIVE ONTOLOGY
DOI:
https://doi.org/10.47839/ijc.6.1.424Keywords:
Adaptive ontology, users information needs, weighted conceptual graphsAbstract
Conceptual graphs are an effective tool for representation of the semantic content of text documents and domain ontology as well. In this article the new method of evaluation of text documents content similarity is proposed. The method consists in representation compared texts as its weighted conceptual graphs supplemented by related context from domain ontology and estimation of a distance between semantic weights centers of these graphs. It is shown that the method satisfies axioms of a metric. Procedures of the automatic tuning of ontology to the specified domain and information needs of user are developed. The results of experiment shows that the taking into account semantics of the used concepts, assertions and significance coefficients from adaptive ontology during the text processing rises the search precision on average 20 %.References
P. Foltz, S. Dumais. Personalised Information Delivery: Analysis of Information Filtering Methods. Communications of the ACM 35(12), 1992.
E. Rasmussen. Clustering Algorithms. Information Retrieval: Data Structures & Algorithms. William B. Frakes and Ricardo Baeza-Yates (Eds.), Prentice Hall, 1992.
M. Montes-y-Gomez, A. Gelbukh, A. Lopez-Lopez. Comparison of Conceptual Graphs. Mexican International Conference on Artificial Intelligence MICAI 2000, Acapulco, Mexico, April 2000. Lecture Notes in Artificial Intelligence N 1793, Springer-Verlag, 2000.
H. Bulskov, R. Knappe, T. Andreasen. On Querying Ontologies and Databases. 6th International Conference on Flexible Query Answering Systems. Lyon, France, June 24-26. Springer-Verlag. Lecture Notes in Artificial Intelligence, 3055, 2004.
Д. Ночевнов. Методи та засоби адаптивного інформаційного пошуку на основі моделі користувача: Автореф. дис. канд. техн. наук: 05.13.06/Черкаський держ. технологічний ун-т. — Черкаси, 2005. — 20с.
Wang Hui-jin, Hu Hua, Li Qing. A dynamic knowledge base based search engine. Journal of Zhejiang University Science, 2005 6A(7), pp. 683-688.
John F Sowa. “Knowledge Representation: Logical, Philosophical and Computational Foundations”. 1-st edition, Thomson Learning, 1999.
T. Huibers, I. Ounis, J. Chevallet “Conceptual Graph Aboutness”, Proceedings of the 4th International Conference on Conceptual Structures (ICCS'96), Sydney, Australia, Lecture Notes in Artificial Intelligence, Springer. 1996., рр. 130-144.
D. Genest, M. Chein. “An Experiment in Document Retrieval Using Conceptual Graphs”. Lecture Notes in artificial Intelligence 1257, August 1997.
H. Myaeng, A. Lopez-Lopez “Conceptual Graph Matching: a Flexible Algorithm and Experiments”, Journal of Experimental and Theoretical Artificial Intelligence, Vol. 4, 1992.
M. Montes-y-Gomez, A. Gelbukh, A. Lopez-Lopez, R. Baeza-Yates. Flexible Comparison of Conceptual Graphs. 12th International Conference on Database and Expert Systems Applications DEXA 2001, Munich, Germany, September 2001. Lecture Notes in Computer Science, vol. 2113, Springer-Verlag, 2001.
Даревич Р.Р., Досин Д.Г., В.В.Литвин. Mетод автоматичного визначення інформаційної ваги понять в онтології бази знань // Відбір та обробка інформації. 2005.-Вип. 22(98).–с.105-111
Р. Седжвик. Фундаментальные алгоритмы на С++. Алгоритмы на графах: Пер. с англ./Роберт Седжвик. - СПб: ООО "ДиаСофтЮП", 2002. - 496 с.
Downloads
Published
How to Cite
Issue
Section
License
International Journal of Computing is an open access journal. Authors who publish with this journal agree to the following terms:• Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
• Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
• Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.