NEURAL-NETWORK BASED METHOD OF CONTROL INFLUENCES FORMING IN COMPUTER SYSTEM CONTROLLING ENVIRONMENTAL PARAMETERS
DOI:
https://doi.org/10.47839/ijc.7.1.490Keywords:
Control influences forming, coal mine ventilation, neural networks, methane concentrationAbstract
A simulation model of a section of mine ventilation network is considered in this paper. The simulation modeling of transient aerogasdynamic processes of methane concentration changing is fulfilled at applying position and exponential control influences. There is proposed a neural-based method of control influences forming by neural network training on the set of optimal control influences. There are defined a criterion and developed an algorithm of optimal control influences forming as a training set of neural network. The simulation modeling of applying of control influences formed by neural network is fulfilled and decreasing of control parameter in the section of mine ventilation network is estimated.References
http://www.sinomedia.net/eurobiz/v200402/regional0402.html.
White D., Sofge D. Handbook of Intelligent Control, New York: Van Nostrand Reinhold, 1992.
Святный В.А., Ефремов С.С. Разработка структуры и операционных алгоритмов микропроцессорной системы безопасного управления проветриванием шахты // Механизация и автоматизация управления. – 1983. – № 4. – С. 31–34.
Абрамов Ф.А., Фельдман Л.П., Святный В.А. Моделирование динамических процессов рудничной аэрологии. – К.: Наукова думка, 1981. – 284 с.
Hu Y., Koroleva O., Krstic M. Nonlinear control of mine ventilation networks // Systems and Control Letters. – 2003. – Vol. 49 (4). – P. 239-254.
Hornik K., Stinchcombe M., White H. Multilayer Feedforward Networks are Universal Approximators // Neural Networks. – 1989. – Vol. 2. – P. 359-366.
Хайкин С. Нейронные сети: полный курс, 2-е издание.: Пер. с. анг. – Под. ред. Куссуль Н.Н. – М.: Издательский дом “Вільямс”, 2006. – 1104 с.
Werbos P.J. Overview of Design and Capabilities in Neural Networks for Control. – Cambridge (MA): MIT Press, 1990. – P. 59-65.
Melin P., Castillo O. Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory // Applied Soft Computing Journal. – 2003. – Vol. 3, No. 4. – P. 353-362.
Calise A., Hovakimyan N., Idan M. Adaptive output feedback control of nonlinear systems using neural networks // Automatica. – 2001. – Vol. 37, No. 8. – P. 1201-1211.
Yildirim S. Adaptive robust neural controller for robots // Robotics and Autonomous Systems. – 2004. – Vol. 46, No. 3. – P. 175-184.
Турченко І.В., Кочан В.В., Саченко А.О. Нейромережеве управління дільницею шахтної вентиляційної мережі // Наукові праці Донецького національного технічного університету / Серiя “Проблеми моделювання та автоматизації проектування динамічних систем” (МАП-2006). Випуск: 5 (116). – Донецьк: ДонНТУ. – 2006. – С. 146-155.
Чепцов А.А. Системная организация и алгоритмы функционирования моделирующего сервисного центра (для угольной промышленности): Дис. … канд. техн. наук: 05.13.06. – К., 2007. – 211 с.
Головко В.А. Нейронные сети: обучение, модели и применение. – М.: Радиотехника, 2001. – 256 c.
Hagan M. T., Demuth H. B., Beale M. H. Neural Network Design. – Boston, MA: PWS Publishing, 1996.
Downloads
Published
How to Cite
Issue
Section
License
International Journal of Computing is an open access journal. Authors who publish with this journal agree to the following terms:• Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
• Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
• Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.