ONLINE DISTRIBUTED SOURCE LOCALIZATION FROM EEG/MEG DATA

Authors

  • Christof Pieloth
  • Thomas R. Knosche
  • Burkhard Maess
  • Mirco Fuchs

DOI:

https://doi.org/10.47839/ijc.13.1.617

Keywords:

EEG, MEG, Source Imaging, GPGPU.

Abstract

Electroencephalography (EEG) and Magnetoencephalography (MEG) provide insight into neuronal processes in the brain in a real-time scale. This renders these modalities particularly interesting for online analysis methods, e.g. to visualize brain activity in real-time. Brain activity can be modeled in terms of a source distribution found by solving the bioelectromagnetic inverse problem, e.g. using linear source reconstruction methods. Such methods are particularly suitable to be used on modern highly parallel processing systems, such as widely available graphic processing units (GPUs). We present a system that, according to its modular scheme, can be configured in a very flexible way using graphical building blocks. Different preprocessing algorithms together with a linear source reconstruction method can be used for online analysis. The algorithms use both CPU and GPU resources. We tested our system in a simulation and in a realistic experiment.

References

S. Baillet, J. C. Mosher and R. M. Leahy, Electromagnetic brain mapping, IEEE Signal Processing Magazine, Vol. 18, Issue 6, 2001, pp. 14-30.

M. S. Hämäläinen and R. J. Ilmoniemi, Interpreting Measured Magnetic Fields of the Brain: Estimates of Current Distributions, Helsinki University of Technology, 1984.

M. S. Hämäläinen and R. J. Ilmoniemi, Interpreting magnetic fields of the brain: minimum norm estimates, Medical and Biological Engineering and Computing,

(32) 1 (1994), pp. 35-42.

C. Dinh, J. Rühle, S. Bollmann, J. Haueisen and D. Güllmar, A GPU-accelerated performance optimized RAP-music algorithm for real-time source localization, Biomedical Engineering/ Biomedizinische Technik, DOI: 10.1515/bmt-2012-4260, September 2012.

C. Dinh, M. Luessi, L. Sun, J. Haueisen and M. S. Hamalainen, MNE-X: MEG/EEG Real-time acquisition, real-time processing, and real-time source localization framework, Biomedical Engineering / Biomedizinische Technik, (58) (2013).

Y. Renard, F. Lotte, G. Gibert, E. Maby, V. Delannoy, O. Bertrand and A. L'cuyer, OpenViBE: An open-source software platform to design, test and use brain-computer interfaces in real and virtual environments, Presence Teleoperators Virtual Environments Presence Teleoperators and Virtual Environments, (19) 1 (2010), pp. 35-53.

Q. Noirhomme and R. I. Kitney, Single-trial EEG source reconstruction for brain–computer interface, IEEE Transactions on Biomedical Engineering, (55) 5 (2008), pp. 1592-1601.

C. Pieloth, J. M. Pizarro, T. Knösche, B. Maess and M. Fuchs, An online system for neuroelectromagnetic source imaging, Proceedings of the IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS'2013), Berlin, Germany, 12-14 September 2013, pp. 270-274.

H. Nolan, R. Whelan and R. B. Reilly, FASTER: Fully automated statistical thresholding for EEG artifact rejection, Journal of Neuroscience Methods, (192) 1 (2010), pp. 152-162.

A. Delorme, T. Sejnowski and S. Makeig, Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis, NeuroImage, (34) 4 (2007), pp. 1443-1449.

B. Yvert, A. Crouzeix-Cheylus and J. Pernier, Fast realistic modeling in bioelectromagnetism using lead-field interpolation, Human Brain Mapping, (14) 1 (2001), pp. 48-63.

S. Eichelbaum, M. Goldau, S. Philips, A. Reichenbach, R. Schurade and A. Wiebel, OpenWalnut: A new tool for multi-modal visualization of the human brain, Proceedings of the EG VCBM, 2010.

S. Eichelbaum, M. Hlawitschka, A. Wiebel and G. Scheuermann, OpenWalnut – An open-source visualization system, Proceedings of the 6th High-End Visualization Workshop, 2010.

A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen and M. Hämäläinen, MNE software for processing MEG and EEG data, NeuroImage, (86) (2013), 446-460.

S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, in Proceedings of the 3rd International Conference on 3-D Digital Imaging and Modeling, 2001.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen and A. M. Dale, Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain, Neuron, (33) 3 (2002), pp. 341-355.

T. R. Knösche, Transformation of whole-head MEG recordings between different sensor positions, Biomedical Engineering / Biomedizinische Technik, (47) 3 (2002),

pp. 59-62.

K. Uutela, S. Taulu and M. S. Hämäläinen, Detecting and correcting for head movements in neuromagnetic measurements, NeuroImage, (14) 6 (2001), pp. 1424-1431.

Downloads

Published

2014-08-01

How to Cite

Pieloth, C., Knosche, T. R., Maess, B., & Fuchs, M. (2014). ONLINE DISTRIBUTED SOURCE LOCALIZATION FROM EEG/MEG DATA. International Journal of Computing, 13(1), 17-24. https://doi.org/10.47839/ijc.13.1.617

Issue

Section

Articles