SENSOR BASED ALGORITHMS FOR DEAD RECKONING: A COMPARISON OF TWO APPROACHES FOR SMARTPHONES

Authors

  • Daniel Caspari
  • Mircea Strutu
  • Lucas Riedhammer
  • Uwe Grossmann

DOI:

https://doi.org/10.47839/ijc.13.1.621

Keywords:

Smartphone based indoor localization, dead reckoning, accelerometer sensors, fft, peak detection, smartphone, distance, indoor, positioning.

Abstract

The implementation of a reliable indoor localization system can be the starting point for a variety of much desired applications. Either for efficient patient monitoring inside a hospital or as an automatic guide inside a museum, a working localization solution can be useful. Smartphone technology represents a powerful and user friendly tool in order to achieve adequate indoor positioning. This paper explores the potential of using smartphone sensor data (accelerometer and compass) in order to track the location of the person holding the device using dead reckoning algorithms. Two different approaches are under scrutiny in order to assess their performance in different real life inspired scenarios.

References

D. Alvarez, R. C. Gonzalez, A. Lopez, J. C. Alvarez, Comparison of step length estimators from weareable accelerometer devices, Proceedings of the 28th IEEE Annual International Conference on Engineering in Medicine and Biology Society, EMBS’06, 2006, pp. 5964–5967

M. Alzantot, M. Youssef, Uptime: ubiquitous pedestrian tracking using mobile phones, Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), 2012, pp. 3204-3209.

A. Bahillo, S. Mazuelas, J. Prieto, P. Fernández, R.M. Lorenzo, and E.J. Abril, Hybrid RSS-RTT localization scheme for wireless networks, Proceedings of the IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2010, pp. 1-7.

Robert Bosch GmbH, Data Sheets, www.bosch-sensortech.com

BMA220 http://ae-bst.resource.bosch.com/media/products/dokumente/bma220/BST-BMA220-DS003-08.pdf

BMA250 http://ae-bst.resource.bosch.com/media/products/dokumente/bma250/bst-bma250-ds002-05.pdf

D. Caspari, J. Pickert, U. Grossmann, Positionsbestimmung mittels Dead Reckoning (Koppeln) und Schrittfrequenz-Erkennung, 10. Konferenz Wireless Communication and Information, 24./25.10.2013, Berlin, 2013.

S. Gansemer, U. Grossmann, S. Hakobyan, RSSI-based Euclidean distance algorithm for indoor positioning adapted for the use in dynamically changing WLAN environments and multi-level buildings, Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2010, pp. 1-6.

R. Harle, A survey of indoor inertial positioning systems for pedestrians, IEEE Communications Surveys & Tutorials, (15) 3 (2013) pp. 1281-1293.

Y. Hatano, Use of the pedometer for promoting daily walking exercise, Int. Council Health Phys. Educ. Recreat., (29) (1993), pp.4-8.

J. Jahn, U. Batzer, J. Seitz, L. Patino-Studencka, J. Gutierrez Boronat, Comparison and evaluation of acceleration based step length estimators for handheld devices, Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2010, pp. 1–6.

S. W. Jeen, W. L. Che, T. C. Yang, and J. H. Yu,“Walking pattern classification and walking distance estimation algorithms using gait phase information, IEEE Transactions on Biomedical Engineering, (59) 10 (2012), pp. 2884–2892.

Y. Kim, Y. Chon, and H. Cha, Smartphone-based collaborative and autonomous radio fingerprinting, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, (42) 1 (2012), pp. 112-122.

H. Leppakoski, J. Collin, J. Takala, Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 1569-1572.

J.A.B. Link, P. Smith, N. Viol, and K. Wehrle, Footpath: Accurate map-based indoor navigation using smartphones, Proceedings of the IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2011, pp. 1-8.

J. Mantyjarv, M. Lindholm, E. Vildjiounaite, S.M. Makela, & H.A. Ailisto, Identifying users of portable devices from gait pattern with accelerometers, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05), March 2005, Vol. 2, pp. ii-973.

A. Mikov, A. Moschevikin, A. Fedorov, and A. Sikora, A localization system using inertial measurement units from wireless commercial hand-held devices, Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN’2013), October 2013, pp. 857–863.

PmWiki, axis_device.png, from http://media2mult.uos.de/pmwiki/fields/pgs10/index.php?n=Main.SensorenAndroid”, 17.04.2013.

A. Pratama, R. Widyawan, and R. Hidayat, Smartphone-based pedestrian dead reckoning as an indoor positioning system, Proceedings of the International Conference on System Engineering and Technology (ICSET), 2012, pp. 1–6.

T. Sayeed, A. Sama, A. Catala, J. Cabestany, Comparison and adaptation of step length and gait speed estimators from single belt worn accelerometer positioned on lateral side of the body, Proceedings of the IEEE 8th International Symposium on Intelligent Signal Processing (WISP’13), 2013, pp. 14–20.

A. Serra, D. Carboni, and V. Marotto, Indoor pedestrian navigation system using a modern smartphone pedestrian navigation system using a modern smartphone, Proceedings of the MobileHCI’2010, September 7-10, 2010, pp. 397–398.

S. H. Shin, C. G. Park, J. W. Kim, H. S. Hong, J.M. Lee, Adaptive step length estimation algorithm using low-cost MEMS inertial sensors, Proceedings of the IEEE Sensors Applications Symposium SAS’07, 2007, pp. 1-5.

M. Strutu, D. Caspari, J. Pickert, U. Grossmann, and D. Popescu, Pedestrian smartphone based localization for large indoor areas, Proceedings of the 7th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Berlin, 12-14 September, 2013, pp. 450-454.

Downloads

Published

2014-08-01

How to Cite

Caspari, D., Strutu, M., Riedhammer, L., & Grossmann, U. (2014). SENSOR BASED ALGORITHMS FOR DEAD RECKONING: A COMPARISON OF TWO APPROACHES FOR SMARTPHONES. International Journal of Computing, 13(1), 50-60. https://doi.org/10.47839/ijc.13.1.621

Issue

Section

Articles