IMAGE CLASSIFICATION BY PATTERN AND STRUCTURE FEATURES CLUSTERING

Authors

  • Roman Melnyk
  • Ruslan Tushnytskyy

DOI:

https://doi.org/10.47839/ijc.8.3.685

Keywords:

Сlustering, visual pattern, hierarchical tree, rectangles, closed regions, integrated areas, structure features, classification, hierarchical clustering algorithm, tolerance coefficient, specific density, volume.

Abstract

An approach for decomposition of visual images by clustering and pattern classification by structure features is considered. Multilevel hierarchical clusters such as rectangles, closed regions and integrated areas are proposed. Hierarchically constructed fragments are material to form pattern structure features. To reduce the clustering algorithm complexity the tolerance coefficient and quality criteria for merging process are proposed. The results of pattern classification by structure features for some image groups by hand and automatic regimes are presented in the article. Hierarchical trees are got for different number of structure coefficients as well as for absolute and relative merging functions.

References

A. Vailaya, A. K. Jain, H. J. Zhang, “On image classification: city vs. landscape”, Pattern Recognition, vol. 31, p. 1921-1935, 1998.

M. J. Swain, D. H. Ballard, “Color indexing”, International journal of Computer Vision, vol. 7, n. 1, p. 11-32, 1991.

H. Nezamabadi-pour, E. Kabir, “Image retrieval using histograms of unicolor and bicolor blocas and direccional changes in intensity gradient”, Pattern Recognition Letters, vol. 25, n. 14, p. 1547-1557, 2004.

F. Mokhtarian, S. Abbasi, “Shape similatity retrieval under affine transforms”, Pattern Recognition, vol. 35, p. 31-41, 2002.

A. K. Jain, A. Vailaya, “Image retrieval using color and shape”, Pattern Recognition, vol. 29, n. 8, p. 1233-1244, 1996.

B. S. Manjunath, W. Y. Ma, “Texture feature for browsing and retrieval of image data”, IEEE PAMI, vol. 8, n. 18, p. 837-842, 1996.

J. R. Smith, C. S. Li, “Image classification and quering using composite region templates”, Academic Press, Computer Vision and Understanding, vol. 75, p. 165-174, 1999.

J. Z. Wang, J. Li, G. Wiederhold, “SIMPLIcity: semantic sensitive integrated matching for picture libraries”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, n. 9, p. 947-963, 2001.

H. W. Yoo, S. H. Jung, D. H. Jang, Y. K. Na, “Extraction of major object features using VQ clustering for content-based image retrieval”, Pattern Recognition, vol. 35, p. 1115-1126, 2002.

M. Szummer, R. W. Picard, “Indoor-outdoor image classification”, IEEE International Workshop on Content-Based Access of Image and Video Database (ICCV’98), p. 42-51, 1998.

T. P. Minka, R. W. Picard, “Interactive learning using a society of models”, Pattern Recognition, vol. 30, n. 3, p. 565, 1997.

M. C. Burl, M. Weber, P. Perona, “A probabilistic approach to object recognition using local photometry and global geometry”, Proc. European Conf. Computer Vision, p. 628-641, 1998.

J. Z. Wang, M. A. Fishler, “Visual similarity, judgmental certainty and stereo correspondence”, Proc. DARPA Image Understanding Workshop, 1998.

R. Melnyk, R. Tushnytskyy, “Decomposition of Visual Patterns”, Proc. of 9th Intern. Conf. CADSM-2007, p. 278-279, 2007.

R. Melnyk, R. Tushnytskyy, “Image Classification by their Structural Properties”, Proc. of 3rd Intern. Conf. CSIT-2008, p. 37-40, 2008.

R. Melnyk, R. Tushnytskyy, “Cluster Parameters Control in Pattern Decomposition Algorithm”, Information Extraction and Processing. – 2007. – № 27 (103). – P. 58–62. – (in ukrainian)

Andy M. Yip, Chris Ding, Tony F. Chan. Dynamic Cluster Formation Using Level Set Methods. – IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.28, n. 6, pp.877-889, June, 2006.

Leo Grady, Eric L. Schwartz. Isoperimetric Graph partitioning for Image segmentation. – IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.28, n. 3, pp.469-475, March, 2006.

M. Pavan, M. Pelillo. Dominant sets and Pairwise Clustering. – IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.29, n. 1, pp.167-172, January, 2007.

C. Ding, X. He. Cluster Aggregate Inequality and Multilevel Hierarchical Clustering, Proc. 9th European Conf. Principles of Data Mining and Knowledge Discovery (2005). p. 71-83.

Downloads

Published

2014-08-01

How to Cite

Melnyk, R., & Tushnytskyy, R. (2014). IMAGE CLASSIFICATION BY PATTERN AND STRUCTURE FEATURES CLUSTERING. International Journal of Computing, 8(3), 53-60. https://doi.org/10.47839/ijc.8.3.685

Issue

Section

Articles