APPROACHES TO MODELING OF COGNITIVE EVOLUTION

Authors

  • Vladimir G. Red’ko

DOI:

https://doi.org/10.47839/ijc.10.1.734

Keywords:

Cognitive evolution, modeling, adaptive behavior, animal cognitive abilities.

Abstract

Approaches to modeling of cognitive evolution that is evolution of animal cognitive abilities are proposed and discussed. Backgrounds of models of cognitive evolution, that are developed in an area of researches “Adaptive behavior”, in which modeled “organisms” adapting to variable environment are studied, are outlined. Initial steps of modeling of cognitive evolution are characterized. The sketch program for future investigations of cognitive evolution is proposed.

References

I. Kant. Kritik der reinen Vernunft, Hartknoch, Riga, 1781. See also: I. Kant, Critique of Pure Reason, trans. Werner Pluhar. Indianapolis: Hackett, 1996.

I. Kant. Prolegomena zu einer jeder kunftigen Metaphysik, die als Wissenschaft wird auftreten konnen. Hartknoch, Riga, 1783. See also: I. Kant, Prolegomena to Any Future Metaphysics, trans. Gary Hatfield. New York: Cambridge University Press, 1997.

K. Lorenz. Kant’s doctrine of the a priori in the light of contemporary biology. (1941), in Learning, Development and Culture: Essays in Evolutionary Epistemology, H. Plotkin, Ed. New York: Wiley, 1982, pp. 121-143.

M.E. Szabo. Collected Papers of Gerhard Gentzen. Amsterdam: North-Holland Pub. Co., 1969.

From Animals to Animats. Proceedings of the First International Conference on Simulation of Adaptive Behavior. J.-A. Meyer and S.W. Wilson, Eds. Cambridge: MIT Press, 1991.

J.Y. Donnart, J.-A. Meyer. Learning reactive and planning rules in a motivationally autonomous animat. IEEE Transactions onSystems, Man, and Cybernetics – Part B: Cybernetics 26 (3) (1996). pp. 381-395.

J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The University of Michigan Press, 1975 (1st edn.). Boston, MA: MIT Press, 1992 (2nd edn.).

J.H. Holland, K.J. Holyoak, R.E. Nisbett, P. Thagard. Induction. Processes of Inference, Learning, and Discovery. Cambridge: MIT Press, 1986.

R. Sutton, A. Barto. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998.

J.L. Krichmar, A.K. Seth, D.A. Nitz, J.G. Fleischer, G.M. Edelman. Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions. Neuroinformatics 3 (3) (2005). pp. 197-221.

V.A. Nepomnyashchikh, E.E. Popov, V.G. Red’ko. A bionic model of adaptive searching behavior. Journal of Computer and Systems Sciences International 47 (1) (2008). pp. 78-85.

D.V. Prokhorov, D.C. Wunsch. Adaptive critic designs, IEEE Transactions on Neural Networks 8 (5) (1997). pp. 997-1007.

J.M. Baldwin. A new factor in evolution. American Naturalist 30 (354) (1896). pp. 441-451.

Evolution, Learning, and Instinct: 100 Years of the Baldwin Effect. P. Turney, D. Whitley, R. Anderson, Eds. Special Issue of Evolutionary Computation on the Baldwin Effect 4 (3) (1996).

D.E. Rumelhart, G.E. Hinton, R.G. Williams. Learning representation by back-propagating error, Nature 323 (6088) (1986). pp. 533-536.

S. Grossberg. Classical and instrumental learning by neural networks. Progress in Theoretical Biology, R. Rosen, F. Snell, Eds., New York: Academic Press, vol. 3, 1974, pp. 51-141.

A.G. Barto, R.S. Sutton. Simulation of anticipatory responses in classical conditioning by neuron-like adaptive element. Behavioral Brain Research 4 (3) (1982). pp. 221-235.

Anticipatory Behavior in Adaptive Learning Systems: From Brains to Individual and Social Behavior. LNAI 4520, M.V. Butz, O. Sigaud, G. Pezzulo, G. Baldassarre, Eds. Berlin, Heidelberg: Springer Verlag, 2007.

M. Witkowski. An action-selection calculus. Adaptive Behavior 15 (1) (2007). pp. 73-97.

T.J. Prescott. Forced moves or good tricks in design space? Landmarks in the evolution of neural mechanisms for action selection. Adaptive Behavior 15 (1) (2007). pp. 9-31.

V.G. Red’ko. Models of cognitive evolution: Initial steps. Proceedings of the 6th International Conference on Neural Network and Artificial Intelligence (ICNNAI’2010). Brest, Belarus, 1-4 June, 2010, pp. 133-139.

M.V. Butz, E. Shirinov, K. Reif. Self-organizing sensorimotor maps plus internal motivations yield animal-like behavior. Adaptive Behavior 18 (3-4) (2010). pp. 315-337.

G.A. Beskhlebnova, V.G. Red’ko. Model of formation generalized notions by autonomous agents. Proceedings of 4-th International conference of cognitive science. Tomsk, Russia, 22-26 June 2010, vol. 2, pp. 174-175 (In Russian).

Downloads

Published

2011-12-20

How to Cite

Red’ko, V. G. (2011). APPROACHES TO MODELING OF COGNITIVE EVOLUTION. International Journal of Computing, 10(1), 33-41. https://doi.org/10.47839/ijc.10.1.734

Issue

Section

Articles