Elliptic Curve Pseudorandom Bit Generator with Maximum Period Sequences

Authors

  • Alexandr A. Kuznetsov
  • Yurii Gorbenko
  • Anastasiia Kiian Anastasiia Kiian
  • Yuliia V. Ulianovska
  • Tetiana Kuznetsova

DOI:

https://doi.org/10.47839/ijc.20.4.2436

Keywords:

elliptic curve, discrete logarithm problem, pseudo-random sequence generator, maximum period of sequences, cryptographic strength

Abstract

Pseudo-random number generator is an important mechanism for cryptographic information protection. It can be used independently to generate special data or as the most important element of security of other mechanisms for cryptographic information protection. The application of transformations in a group of points of elliptic and hypereliptic curves is an important direction for the designing of cryptographically stable pseudo-random sequences generators. This approach allows us to build  the resistant cryptographic algorithms in which the problem of finding a private key is associated with solving the discrete logarithm problem. This paper proposes a method for generating pseudo-random sequences of the maximum period using transformations on the elliptic curves. The maximum sequence period is provided by the use of recurrent transformations with the sequential formation of the elements of the point group of the elliptic curve. In this case, the problem of finding a private key is reduced to solving a theoretically complex discrete logarithm problem. The article also describes the block diagram of the device for generating pseudo-random sequences and the scheme for generating internal states of the generator.

References

A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 2018. https://doi.org/10.1201/9780429466335.

I. V. Chugunkov, M. A. Ivanov, E. A. Gridneva, N. Y. Shestakova, “Classification of pseudo-random number generators applied to information security,” Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2017, pp. 370–373. https://doi.org/10.1109/EIConRus.2017.7910569.

J. Chi, L. Dong, Y. Zeng, “Reconfigurable pseudo-random number generator based on cellular automata,” Proceedings of the 2019 International Conference on Networking and Network Applications (NaNA), 2019, pp. 268–273. https://doi.org/10.1109/NaNA.2019.00054.

H. Delfs, H. Knebl, Introduction to Cryptography, Berlin, Heidelberg: Springer, 2015. https://doi.org/10.1007/978-3-662-47974-2.

L. Blum, M. Blum, M. Shub, “A simple unpredictable pseudo-random number generator,” SIAM J Comput, vol. 15, pp. 364–383, 1986. https://doi.org/10.1137/0215025.

M. Blum, S. Micali, “How to generate cryptographically strong sequences of pseudo random bits,” Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (SFCS'1982), 1982, pp. 112–117. https://doi.org/10.1109/SFCS.1982.72.

M. Blum, S. Micali, “How to generate cryptographically strong sequences of pseudo-random bits,” SIAM J Comput, vol. 13, pp. 850–864, 1984. https://doi.org/10.1137/0213053.

S. Rubinstein-Salzedo, Cryptography, Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-94818-8.

A. Shamir, “On the generation of cryptographically strong pseudo-random sequences,” In: Even S, Kariv O, editors. Automata, Languages and Programming, Berlin, Heidelberg: Springer; 1981, p. 544–550. https://doi.org/10.1007/3-540-10843-2_43.

O. Reyad, M. E. Karar, K. Hamed, Random Bit Generator Mechanism Based on Elliptic Curves and Secure Hash Function. ArXiv:200209239 [Cs] 2020. https://doi.org/10.1109/AECT47998.2020.9194180.

J. Payingat, D. P. Pattathil, “Pseudorandom bit sequence generator for stream cipher based on elliptic curves,” Mathematical Problems in Engineering, vol. 2015, e257904, 2015. https://doi.org/10.1155/2015/257904.

M. Benssalah, M. Djeddou, K. Drouiche, “Pseudo-random sequence generator based on random selection of an elliptic curve,” Proceedings of the 2015 International Conference on Computer, Information and Telecommunication Systems (CITS), 2015, p. 1–5. https://doi.org/10.1109/CITS.2015.7297719.

L.-P. Lee, K.-W. Wong, “A random number generator based on elliptic curve operations,” Computers & Mathematics with Applications, vol. 47, pp. 217–226, 2004. https://doi.org/10.1016/S0898-1221(04)90018-1.

R. Steinmetz, J. Dittmann, M. Steinebach, editors, “Communications and Multimedia Security Issues of the New Century,” Proceedings of the IFIP TC6 / TC11 Fifth Joint Working Conference on Communications and Multimedia Security (CMS’01), May 21–22, 2001, Darmstadt, Germany, Springer US, 2001. https://doi.org/10.1007/978-0-387-35413-2.

V. Chevardin, “Deterministic random bit generator on elliptic curve transformations,” Proceedings of International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, 2012, зp. 468–468.

A. Kuznetsov, S. Kavun, V. Panchenko, D. Prokopovych-Tkachenko, F. Kurinniy, V. Shoiko, “Periodic properties of cryptographically strong pseudorandom sequences,” Proceedings of the 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 2018, pp. 129–134. https://doi.org/10.1109/INFOCOMMST.2018.8632021.

A. Kuznetsov, A. Kiian, O. Smirnov, A. Cherep, M. Kanabekova, I. Chepurko, “Testing of code-based pseudorandom number generators for post-quantum applicationm,” Proceedings of the 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), 2020, pp. 172–177. https://doi.org/10.1109/DESSERT50317.2020.9125045.

E. Barker, J. Kelsey, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, National Institute of Standards and Technology, 2012. https://doi.org/10.6028/NIST.SP.800-90a.

E. Barker, J. Kelsey, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, National Institute of Standards and Technology, 2015. https://doi.org/10.6028/NIST.SP.800-90Ar1.

A. Canteaut, Linear Feedback Shift Register, In: van Tilborg H.C.A., Jajodia S., editors, Encyclopedia of Cryptography and Security, Boston, MA: Springer US; 2011, pp. 726–729. https://doi.org/10.1007/978-1-4419-5906-5_357.

R. E. Blahut, Theory and Practice of Error Control Codes. Reprint with corr edition, Reading, MA: Addison-Wesley, 1983.

Downloads

Published

2021-12-31

How to Cite

Kuznetsov, A. A., Gorbenko, Y., Anastasiia Kiian, A. K., Ulianovska , Y. V., & Kuznetsova, T. (2021). Elliptic Curve Pseudorandom Bit Generator with Maximum Period Sequences. International Journal of Computing, 20(4), 494-505. https://doi.org/10.47839/ijc.20.4.2436

Issue

Section

Articles