A Symmetric Cryptoalgorithm Based on a Hierarchical Residue Number System

Authors

  • Ihor Yakymenko
  • Mykhailo Kasianchuk
  • Olesia Martyniuk
  • Serhii Martyniuk

DOI:

https://doi.org/10.47839/ijc.24.1.3880

Keywords:

symmetric cryptoalgorithm, hierarchical residue number system, module, remainder, Chinese remainder theorem, coding rules, cryptographic strength, hierarchical levels, bit depth of modules

Abstract

The paper develops a symmetric cryptoalgorithm based on a hierarchical system of remainder classes that allows to efficiently encrypt text messages using the remainders from dividing the numerical form of the plaintext into the corresponding modules. The peculiarity of this algorithm is its stepwise structure, which allows to gradually reduce the bit depth of modules and operands at each level. The software implementation and relevant experimental studies have shown that the abovementioned algorithm is highly resistant to cryptanalytic attacks due to the multi-level encryption structure and the use of large primes as modules at the first levels. It is established that the cryptographic strength increases with the number of modules, their bit depth, and hierarchical levels. A comparative analysis of the stability of the proposed algorithm and the AES-256 algorithm is carried out. It is determined at which values of the input parameters (bit depth of the modules, number of modules and hierarchy levels) the proposed algorithm demonstrates stability comparable to AES-256, while providing greater flexibility of settings and computational efficiency. The proposed methodology allows changing the number and bit depth of modules, the number of hierarchy levels, and other parameters to achieve the required degree of protection, making the algorithm versatile for different attacks and computing resources. This allows you to adaptively adjust the system parameters to achieve the optimal ratio between the level of cryptographic strength and the speed of computation.

References

D. Le and A. Zincir-Heywood, "Exploring anomalous behaviour detection and classification for insider threat identification," Int. J. Netw. Manag., vol. 31, no. 2, p. e2109, 2020. https://doi.org/10.1002/nem.2109.

S. Kostoudas, O. Markovskyi, N. Doukas, & N. Bardis, "Secure and encrypted communication system on mobile devices," In 2022 12th International Conference on Dependable Systems, Services and Technologies (DESSERT), December 2022, pp. 1-6. https://doi.org/10.1109/DESSERT58054.2022.10018747.

M. Dawood, S. Tu, C. Xiao, H. Alasmary, M. Waqas, and S. Rehman, "Cyberattacks and security of cloud computing: A complete guideline," Symmetry, vol. 15, no. 11, p. 1981, 2023. https://doi.org/10.3390/sym15111981.

R. Leszczyna, "Review of cybersecurity assessment methods: Applicability perspective," Comput. Secur., vol. 108, p. 102376, 2021. https://doi.org/10.1016/j.cose.2021.102376.

N. Valarmathy and P. Vishnupriya, "Network security and cryptography techniques," Netw. Commun. Eng. J., vol. 9, no. 9, pp. 229–231, 2017. [Online]. Available at: https://www.ciitresearch.org/dl/index.php/nce/article/view/NCE112017004.

M. Marwaha, R. K. Bedi, A. Singh, and T. Singh, "Comparative analysis of cryptographic algorithms," Int. J. Adv. Eng. Technol., vol. 9, pp. 16–18, 2013. [Online]. Available at: https://api.semanticscholar.org/CorpusID:14369407.

A. G. Khan, S. Basharat, and M. U. Riaz, "Analysis of asymmetric cryptography in information security based on computational study to ensure confidentiality during information exchange," Int. J. Sci. Eng. Res., vol. 9, no. 10, pp. 992–999, 2018. [Online]. Available at: https://doi.org/10.13140/RG.2.2.30495.61602.

M. Kasianchuk, I. Yakymenko, and Y. Nykolaychuk, "Symmetric cryptoalgorithms in the residue number system," Cybern. Syst. Anal., vol. 57, no. 2, pp. 329–336, 2021. https://doi.org/10.1007/s10559-021-00358-6.

C. Ubochi, B. Olaniyi, K. Ukagwu, and S. Nnamchi, "A comparative analysis of symmetric cryptographic algorithm as a data security tool: A survey," J. Sci. Technol. Res., vol. 5, no. 3, pp. 144–168, 2023.

O. G. Abood and S. K. Guirguis, "A survey on cryptography algorithms," Int. J. Sci. Res. Publ., vol. 8, no. 7, pp. 410–415, 2018. https://doi.org/10.29322/IJSRP.8.7.2018.p7978.

M. N. A. Wahid, A. Ali, B. Esparham, and M. Marwan, "A comparison of cryptographic algorithms: DES, 3DES, AES, RSA and BlowFish for guessing attacks prevention," J. Comp. Sci. Appl. Inform. Technol., vol. 3, no. 2, pp. 1–7, 2018. [Online]. Available at: https://api.semanticscholar.org/CorpusID:52035951.

P. Princy, "A comparison of symmetric key algorithms DES, AES, BlowFish, RC4, RC6: A survey," Int. J. Comput. Sci. Eng. Technol., vol. 6, no. 5, pp. 328–331, 2015. [Online]. Available at: https://api.semanticscholar.org/CorpusID:61177706.

M. Mathur and A. Kesarwani, "Comparison between DES, 3DES, RC2, RC6, BlowFish and AES," Proc. Nat. Conf. New Horiz. IT-NCNHIT, vol. 3, pp. 143–148, 2013. [Online]. Available at: https://api.semanticscholar.org/CorpusID:18620923.

M. Lakhan and A. Ospanova, "Quantum computer," Int. J. Innov. Res. Sci. Eng. Technol., vol. 11, no. 4, pp. 3372–3376, 2022. doi: 10.15680/IJIRSET.2022.1104029.

P. Ananda Mohan, Residue number systems: theory and applications, Birkhäuser, 2016, p. 351. https://doi.org/10.1007/978-3-319-41385-3.

A. Omondi and B. Premkumar, Residue number systems: theory and implementation, Imperial College Press, 2007, p. 296. https://doi.org/10.1142/9781860948671.

M. Kasianchuk, Y. Nykolaychuk, and I. Yakymenko, "Theory and methods of constructing of modules system of the perfect modified form of the system of residual classes," J. Autom. Inf. Sci., vol. 48, no. 8, pp. 56–63, 2016. doi: 10.1615/JAutomatInfScien.v48.i8.60.

N. Vivek and K. Anusudha, "Design of RNS based addition subtraction and multiplication units," Int. J. Eng. Trends Technol., vol. 10, no. 12, pp. 593-596, 2014. https://doi.org/10.1615/JAutomatInfScien.v48.i8.60.

K. V. Lalitha and V. Sailaja, "High performance adder using residue number system," Int. J. VLSI Embedded Syst., vol. 5, pp. 1323-1332, 2014. [Online]. Available at: https://api.semanticscholar.org/CorpusID:41207527.

D. Schoinianakis, "Residue arithmetic systems in cryptography: A survey on modern security applications," J. Cryptogr. Eng., vol. 10, no. 3, pp. 249–267, 2020. https://doi.org/10.1007/s13389-020-00231-w.

I. R. Fadulilahi, E. K. Bankas, and J. B. A. K. Ansuura, "Efficient algorithm for RNS implementation of RSA," Int. J. Comput. Appl., vol. 127, no. 5, pp. 14-19, 2015. https://doi.org/10.5120/ijca2015906381.

M. Esmaeildoust, D. Schinianakis, H. Javashi, T. Stouraitis, and K. Navi, "Efficient RNS implementation of elliptic curve point multiplication GF(p)," IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 21, pp. 1545–1549, 2013. https://doi.org/10.1109/TVLSI.2012.2210916.

A. Kar et al., "Security in cloud storage: An enhanced technique of data storage in cloud using RNS," in Proc. IEEE 7th Annu. Ubiquitous Comput. Electron. Mobile Commun. Conf. (UEMCON), New York, USA, 2016, pp. 1–4. https://doi.org/10.1109/UEMCON.2016.7777905.

H. M. Yassine, "Hierarchical residue numbering system suitable for VLSI arithmetic architecture," Circuits Syst. (ISCAS ’92): Proc. IEEE Int. Symp., San Diego, CA, USA, 1992, pp. 811–814. https://doi.org/10.1109/ISCAS.1992.230098.

L. Djath, L. Bigou, and A. Tisserand, "Hierarchical approach in RNS base extension for asymmetric cryptography," ARITH: 2019 IEEE 26th Symp. Comput. Arithmetic, Kyoto, Japan, Jun 2019. https://doi.org/10.1109/ARITH.2019.00016.

T. Tomczak, "Hierarchical residue number systems with small moduli and simple converters," Int. J. Appl. Math. Comput. Sci., vol. 21, no. 1, pp. 173-192, 2011. https://doi.org/10.2478/v10006-011-0013-2.

A. Skavantzos and M. Abdallah, "Implementation issues of the two-level residue number system with pairs of conjugate moduli," IEEE Trans. Signal Process., vol. 47, no. 3, pp. 826-838, 1999. https://doi.org/10.1109/78.747787.

H. D. L. Hollmann, R. Rietman, S. de Hoogh, and L. Tolhuizen, "A Multi-layer recursive residue number system," IEEE Int. Symp. Inf. Theory (ISIT), 2018, pp. 1460–1464. https://doi.org/10.1109/ISIT.2018.8437612.

S. Zawislak, M. Kasianchuk, I. Yakymenko, and D. Jancarczyk, "Methods of crypto-stable symmetric encryption in the residual number system," Proc. 26th Int. Conf. Knowl.-Based Intell. Inf. Eng. Syst. (KES 2022), Procedia Comput. Sci., vol. 207, pp. 128–137, 2022. https://doi.org/10.1016/j.procs.2022.09.045.

Y. Nykolaychuk, I. Yakymenko, N. Vozna, and M. Kasianchuk, "Residue number system asymmetric cryptoalgorithms," Cybernetics Syst. Anal., vol. 58, no. 4, pp. 611–618, 2022. https://doi.org/10.1007/s10559-022-00494-7.

N. Singh, "An overview of Residue Number System," in Devices, Circuits & Commun.: Proc. Nat. Seminar, 2008, pp. 132–135. [Online]. Available at: https://www.researchgate.net/publication/307174628.

Y. Li, L. Xiao, A. Liang, Y. Zheng, and L. Ruan, "Fast Parallel Garner Algorithm for Chinese Remainder Theorem," in 9th Int. Conf. Netw. Parallel Comput. (NPC), Gwangju, South Korea, 2012, pp. 164–171. https://doi.org/10.1007/978-3-642-35606-3_19.

G. V. Bard, Algebraic Cryptanalysis, Springer, Boston, MA, USA, 2009, p. 392. https://doi.org/10.1007/978-0-387-88757-9.

H. Nover, "Algebraic Cryptanalysis of AES: An Overview," University of Wisconsin, Madison, WI, USA, 2005. [Online]. Available: https://api.semanticscholar.org/CorpusID:11862091.

Downloads

Published

2025-03-31

How to Cite

Yakymenko, I., Kasianchuk, M., Martyniuk, O., & Martyniuk, S. (2025). A Symmetric Cryptoalgorithm Based on a Hierarchical Residue Number System. International Journal of Computing, 24(1), 92-101. https://doi.org/10.47839/ijc.24.1.3880

Issue

Section

Articles